Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 01 March 2021

Abstract and Keywords

Probability theory forms a natural framework for explaining the impressive success of people at solving many difficult inductive problems, such as learning words and categories, inferring the relevant features of objects, and identifying functional relationships. Probabilistic models of cognition use Bayes’s rule to identify probable structures or representations that could have generated a set of observations, whether the observations are sensory input or the output of other psychological processes. In this chapter we address an important question that arises within this framework: How do people infer representations that are complex enough to faithfully encode the world but not so complex that they “overfit” noise in the data? We discuss nonparametric Bayesian models as a potential answer to this question. To do so, first we present the mathematical background necessary to understand nonparametric Bayesian models. We then delve into nonparametric Bayesian models for three types of hidden structure: clusters, features, and functions. Finally, we conclude with a summary and discussion of open questions for future research.

Keywords: inductive inference, Bayesian modeling, Nonparametrics, Bias-variance tradeoff, Categorization, Feature representations, Function learning, Clustering

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.