- Oxford Library of Psychology
- [UNTITLED]
- Oxford Library of Psychology
- About the Editor
- Contributors
- Introduction
- Overview of Traditional/Classical Statistical Approaches
- Generalized Linear Models
- Categorical Methods
- Configural Frequency Analysis
- Nonparametric Statistical Techniques
- Correspondence Analysis
- Spatial Analysis
- Analysis of Imaging Data
- Twin Studies and Behavior Genetics
- Quantitative Analysis of Genes
- Multidimensional Scaling
- Latent Variable Measurement Models
- Multilevel Regression and Multilevel Structural Equation Modeling
- Structural Equation Models
- Developments in Mediation Analysis
- Moderation
- Longitudinal Data Analysis
- Dynamical Systems and Models of Continuous Time
- Intensive Longitudinal Data
- Dynamic Factor Analysis: Modeling Person-Specific Process
- Time Series Analysis
- Analyzing Event History Data
- Clustering and Classification
- Latent Class Analysis and Finite Mixture Modeling
- Taxometrics
- Missing Data Methods
- Secondary Data Analysis
- Data Mining
- Meta-Analysis and Quantitative Research Synthesis
- Common Fallacies in Quantitative Research Methodology
- Index
Abstract and Keywords
Secondary data analysis refers to the analysis of existing data collected by others. Secondary analysis affords researchers the opportunity to investigate research questions using large-scale data sets that are often inclusive of under-represented groups, while saving time and resources. Despite the immense potential for secondary analysis as a tool for researchers in the social sciences, it is not widely used by psychologists and is sometimes met with sharp criticism among those who favor primary research. The goal of this chapter is to summarize the promises and pitfalls associated with secondary data analysis and to highlight the importance of archival resources for advancing psychological science. In addition to describing areas of convergence and divergence between primary and secondary data analysis, we outline basic steps for getting started and finding data sets. We also provide general guidance on issues related to measurement, handling missing data, and the use of survey weights.
Keywords: Classical Test Theory, correlational research, missing data techniques, psychological science, reliability, survey research, survey weighting, validity
M. Brent Donnellan, Department of Psychology, Michigan State University, East Lansing, MI
Richard E. Lucas, Department of Psychology, Michigan State University, East Lansing, MI
Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.
- Oxford Library of Psychology
- [UNTITLED]
- Oxford Library of Psychology
- About the Editor
- Contributors
- Introduction
- Overview of Traditional/Classical Statistical Approaches
- Generalized Linear Models
- Categorical Methods
- Configural Frequency Analysis
- Nonparametric Statistical Techniques
- Correspondence Analysis
- Spatial Analysis
- Analysis of Imaging Data
- Twin Studies and Behavior Genetics
- Quantitative Analysis of Genes
- Multidimensional Scaling
- Latent Variable Measurement Models
- Multilevel Regression and Multilevel Structural Equation Modeling
- Structural Equation Models
- Developments in Mediation Analysis
- Moderation
- Longitudinal Data Analysis
- Dynamical Systems and Models of Continuous Time
- Intensive Longitudinal Data
- Dynamic Factor Analysis: Modeling Person-Specific Process
- Time Series Analysis
- Analyzing Event History Data
- Clustering and Classification
- Latent Class Analysis and Finite Mixture Modeling
- Taxometrics
- Missing Data Methods
- Secondary Data Analysis
- Data Mining
- Meta-Analysis and Quantitative Research Synthesis
- Common Fallacies in Quantitative Research Methodology
- Index