- Oxford Library of Psychology
- [UNTITLED]
- Oxford Library of Psychology
- About the Editor
- Contributors
- Introduction
- Overview of Traditional/Classical Statistical Approaches
- Generalized Linear Models
- Categorical Methods
- Configural Frequency Analysis
- Nonparametric Statistical Techniques
- Correspondence Analysis
- Spatial Analysis
- Analysis of Imaging Data
- Twin Studies and Behavior Genetics
- Quantitative Analysis of Genes
- Multidimensional Scaling
- Latent Variable Measurement Models
- Multilevel Regression and Multilevel Structural Equation Modeling
- Structural Equation Models
- Developments in Mediation Analysis
- Moderation
- Longitudinal Data Analysis
- Dynamical Systems and Models of Continuous Time
- Intensive Longitudinal Data
- Dynamic Factor Analysis: Modeling Person-Specific Process
- Time Series Analysis
- Analyzing Event History Data
- Clustering and Classification
- Latent Class Analysis and Finite Mixture Modeling
- Taxometrics
- Missing Data Methods
- Secondary Data Analysis
- Data Mining
- Meta-Analysis and Quantitative Research Synthesis
- Common Fallacies in Quantitative Research Methodology
- Index
Abstract and Keywords
Historically it has been easier to focus on measuring and describing differences between groups of people rather than try to describe the dynamic ways that individuals change. Dynamical systems are mathematical models that aim to describe how constructs change over time. Frequently these models are continuous time models; models that try to capture the function that underlies a set of observations. This chapter introduces the concept of a dynamical system and of continuous time models. Two methods are introduced for the fitting of continuous time models to observed data: one using the approximate discrete model for a first-order autoregressive model and the second using a method of estimating latent derivatives for a second-order autoregressive model.
Keywords: Dynamical System(s), Dynamic System(s), Continuous Time, Discrete Time, Differential Equation Model(s)(ing), Derivative Estimation, Approximate Discrete Model
Pascal R. Deboeck, Department of Psychology, University of Kansas, Lawrence, KS
Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.
- Oxford Library of Psychology
- [UNTITLED]
- Oxford Library of Psychology
- About the Editor
- Contributors
- Introduction
- Overview of Traditional/Classical Statistical Approaches
- Generalized Linear Models
- Categorical Methods
- Configural Frequency Analysis
- Nonparametric Statistical Techniques
- Correspondence Analysis
- Spatial Analysis
- Analysis of Imaging Data
- Twin Studies and Behavior Genetics
- Quantitative Analysis of Genes
- Multidimensional Scaling
- Latent Variable Measurement Models
- Multilevel Regression and Multilevel Structural Equation Modeling
- Structural Equation Models
- Developments in Mediation Analysis
- Moderation
- Longitudinal Data Analysis
- Dynamical Systems and Models of Continuous Time
- Intensive Longitudinal Data
- Dynamic Factor Analysis: Modeling Person-Specific Process
- Time Series Analysis
- Analyzing Event History Data
- Clustering and Classification
- Latent Class Analysis and Finite Mixture Modeling
- Taxometrics
- Missing Data Methods
- Secondary Data Analysis
- Data Mining
- Meta-Analysis and Quantitative Research Synthesis
- Common Fallacies in Quantitative Research Methodology
- Index