Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 26 February 2021

(p. 936) Subject Index

(p. 936) Subject Index

A
Aaron Manby steamer 511
absolute space concept 124, 359–60
accelerated motion 27–54, 113, 120, 235–8, 801–2
see also motion
acoustics 594
adiabatic heating and cooling 483–6
adiabatic invariance principle 827, 828
affine connection 125
air engine 519–22
air pumps 11–12, 103, 104, 105, 217–18
experiments 215–18
alcohol content measurement 713
aluminium use in instrument-making 603
amber effect 433
ammeters 590
Ampère’s law 573
Andromeda nebula 896
animal electricity see galvanism
anomalous dispersion 468
anomalous Zeeman effect 830–3, 836
Anschauliche Quantentheorie (Jordan) 671
antinucleons 913–14
Arcueil society 270, 272–81, 412–17, 418, 537
Astronomers Royal 333–4
astronomy 228
astrophysics 893–4
astrospectroscopy 893
atomic structure 824–36
Bohr model 815, 824–9
construction principle 833
exclusion principle 815, 830, 833, 835, 836
penetrating orbits 833
Rumf model 832
atomism 140–3, 724, 783–4
Austrian instrument-makers 629–30
Avogadro’s number 768, 772, 777, 784
B
balance-making 99
Balmer formula 825
barometers 103–4, 307, 338, 350
marine 340
barometric experiments 212–18
battery see voltaic pile
big bang theory 902–3, 904–5, 908–12
big science 597
Biot-Savart law 547
BKS paper 838–9
black-body radiation 741, 760n, 783, 816, 818, 844–5, 894
background microwave radiation 909–12, 915–16
blood oxygenation 684
Boltzmann equation 773, 774
Boyle’s law 385, 421, 767
brass use in instrument-making 330–1, 601–2
Britannia steamer 510
British instrument-makers see United Kingdom
British market 333–41
C
calculus 114, 148–9, 154, 249, 251–9, 260
Leibniz 255–9
Newton 251–5
see also mathematics
caloric theory 416, 420–3, 473, 478, 482–8, 493–503, 766
calorimeters 474
ice calorimeter 477
calorimetry 476–7
Cambridge, University of 333, 338
Cambridge Platonists 113
Cavendish Laboratory 707–8
chair of experimental physics 294
cannon-boring experiment 493, 496
canonical ensemble 779, 782
capillary action 411, 425
Carnot cycle 498–502
carp bladder experiment 215
Cauchy series 461
Cauchy–Riemann equations 387
celestial motion see planetary motion
centripetal force 86, 116, 126, 135–6
chromatic polarization 449–51, 456
chronometers 334
classical physics 712–14, 751–2
ether theory significance 730–6
French experimental practice 741–50, 760–1n
identification of classical physicists 723–30
industry interrelationship 736–41
clock synchronization 740–1, 799–800
COBE satellite 915–16
Coimbra university, Portugal 346
(p. 937) cold dark matter (CDM) 917
collision theory 84–6, 112–13, 211
colour 169–78
natural bodies 186–7
primary colours 172, 176–7, 197n
theory of fits 191–3, 198n
thick plates 188–93
thin plates 181–6, 220–1
see also light; optics
combinatorials 861
comets, motion of 119, 138, 144–5, 155–6
Comet steamer 510
compass-makers 99, 334, 343
complementarity principle 848–50, 859n
complex numbers 466–7
Compton effect 839–40
conduction of heat 489, 490–3
conductivity 564, 575, 577–8
conical refraction 459
conic construction 243–4
construction principle 833, 855n
convection 489
Copernican revolution 88–9
Copernican Revolution, The (Kuhn, 1957) 654
copper use in instrument-making 603
Coriolis force 121, 124
correlation 685, 686
correspondence principle 829
cosmology 228, 892
CDM paradigm 915–17
astrophysics 893–4
big bang theory 902–3, 904–5, 908–12
cosmology before relativity 894–6
early universe studies 903–5, 912–14
Einsteinian cosmology 897–9
expanding universe 899–903, 906–7, 908
inflation theory 914–15
microwave background radiation 904, 909–12, 915–16
multiverse hypotheses 918–19
particle cosmology 913
perfect cosmological principle 906–7
publications 912
steady-state model 905–9
textbooks 911
Cours de physique de l’École polytechnique (Jamin) 663
current balance 545
curves, mechanical generation of 243–7
cycloid 113, 209–10, 246–8
D
d’Alembert’s paradox 134, 388
d’Alembert’s principle 372–6
Dalton’s law 421
dark energy 917
demonstrations see public demonstrations
De Motu (Galileo) 26–9, 232
De Motu (Newton) 115–19
Dialog (Galileo) 36–9
diamagnetics 563–5
didactic instruments 587–8
Die Experimentalphysik, methodisch dargestellt (Heussi) 662
dielectric capacity 571
dielectrics 561, 571–2, 579
Die Quantentheorie (Reiche) 671
diffraction 193–6, 453–5, 456
dipole 579, 582
dispersion of light 178–9, 198n, 461–2, 472n, 838–40
anomalous dispersion 468
dividing engines 330, 335, 359–600
domestic instruments 593
Doppler effect 893, 899
dualist metaphysics 72–3
Dutch instrument-makers 345–6, 630
E
Earth
Earth–Moon–Sun system 130, 135, 138–40, 157, 392–4
shape of 154–5, 342
École Normale, France 659, 677n
École Polytechnique, Paris 272, 413, 414, 417, 423–4, 446, 537
Edinburgh, University of 338
Edison effect 739
education 595, 636, 652, 654–5, 712–13
school curriculum 655
teaching instruments 587–8
see also universities
elasticity 366
dynamics of elastic bodies 379–82
elastic surfaces 415
short-range forces approach 415, 425–6
statics of elastic bodies 376–9
electrical resistance standard 706–8, 712
electric field 575, 577
see also field theory
electricity 285–7, 432–42, 558–9
Ampère’s studies 285–92
capacity 441
conductivity 564, 575, 577–8
electrical instruments 286–7, 288, 289–90, 291, 341, 559, 590
electric current 287–93, 573
electric objects 434–6
experiments 434–42
galvanism 275, 533–6, 680
industrial use 737–8, 738–9
Leiden jar 436–9
mathematical approaches 439, 536–9
physiological effects 686–90
power supply 739
public demonstrations 303–5
sparks 561–2
uniform nature of 558
see also voltaic pile
electric lighting systems 594, 821
electrocapillarity 744–5
electrochemistry 559
electrocution 689
electrodynamics 287, 291, 545
development of 547–50, 573–8
electromagnetic generators 556–7
electromagnetic induction 549–50, 554–6, 559–62
induction coils 596
lines of inductive force 561
specific inductive capacity 561
electromagnetic radiation 579–83, 745–6, 862–3
French response 745–6
multiple resonance 746
radio communication 863–7
electromagnetic rotation 548, 551–2
electromagnetic telegraph 557–8
electromagnetic world view 799
electromagnetism 419–20, 547–50, 575, 732, 739–40, 789
Ampère’s studies 543–5
Arago’s effect 553–4
discovery of 287–9, 539–42
Laplacian response 545–7
electromagnets 553
electron
position of 849
spin 835–6
electronic instruments 596–7
electronics industry
future directions 886–7
innovation management 879–80
integrated circuit introduction 877–8
microprocessor revolution 881–6
radio 863–7
small high-technology companies 875–7
transistor manufacture 873–8
electronic theory of matter (ETM) 732–3, 735, 736
electrophore 440
electrotherapy 681, 685, 688–9, 691–2
Élémens de physique expérimentale et de météorologie (Pouillet, 1827) 660, 661
Elements of Physical Manipulation (Pickering) 665
ellipse-tracing device 244
energy 364–5
conservation of 364, 477, 503, 508, 572, 681, 686–90, 735–6, 739
interconversion of 503, 749
mass–energy equivalence 798–9
medical perspectives 681, 686–90
quantum theory 816
engines 509
air engine 519–22
heat engine 498–500, 509
entropy 496, 504
heat death concept 895
increase 816, 894–5
probabilistic interpretation 775–6, 783
Entwurf theory of gravity 805–7
equipartition theorem 724, 772, 822
equivalence 800–2
mass–energy equivalence 798–9
ergodic hypothesis 780–1
ether 2, 148, 161, 268, 273, 275, 389, 393, 420, 452
dynamics 459–60
in electrodynamic theory 573–81
as a key feature of classical physics 722, 730–6
in optical theories 413, 419, 452, 458, 459–64, 469
structure 459
Euclidean theory of proportions 233
evaporation 485
exclusion principle 815, 830, 833, 835, 836
expansive principle 497–8
experimentation 199–222, 433
barometric experiments 212–18
electrical experiments 434–42
motion experiments 204–12
optical experiments 218–21
F
falling bodies
experiments 204–7
mathematics 232, 234–8
see also motion
Faraday cage 560
Faraday effect 563, 577
faradization 691
Fermi layers 869, 872
ferromagnetic materials 565
Feynman diagrams 669
field theory 571–6, 580–1
finfet nano-device 886–7
First World War 634–9
fits, theory of 191–3, 198n
fluid mechanics 382–91
hydrostatics 382, 383
Torricelli’s law 383
forces, composition of 362
France
education 658
experimental approach 741–50, 751, 760–1n
First World War 636–7
French Revolution 327, 344
inter-war years 640–2
metrology 344, 703–4, 714
textbooks 658–61, 663–4
franklinization 691
(p. 939) friction 300
in engine design 516, 520
heat generation 493
measurement 309, 310
G
galaxy formation 908
galvanism 275, 533–6, 680
medical perspectives 680, 681–3
galvanization 691
galvanometer 544, 553
gas theory 778
Boltzmann equation 773, 774
Boyle’s law 385, 421, 483, 767
caloric theory 416, 420–3, 483–8
Dalton’s law 421
degeneracy of gases 843
gases as particles in motion 768–9
global approaches 779–82
heat properties 483, 772–3
kinetic theory 385, 767–78
Maxwell–Boltzmann law 771–2
transport properties of gases 769–71
Geissler’s tubes 603
general covariance 805–7
general relativity 125–6
Geneva, University of 349
geometry 238–49
analytic 238–41
organic 241–9
see also mathematics
germanium use in semiconductors 870, 872–3
Germany
education 658, 661–2
First World War 638–9
instrument-makers 350, 616–24, 638–9, 642–3
inter-war years 642–3
metrology 705–6, 708, 714
textbooks 661–3
Glasgow, University of 518–19
glass use in instrument-making 331–2, 603
supply issues, First World War 634–8
glass-workers 100–1, 103–4, 603–6
God, views about
Descartes 70–2, 83, 93–4
gold
counterfeiting 713–14
use in instrument-making 332, 602
grand unified theory (GUT) 914
graphoscope 593
gravity 110, 122, 128–31, 135–40, 147, 152–3, 155–7, 895–6
cause of 159–61
Einstein’s constant 897
Entwurf theory 805–7
gravitational potential 366
inverse square law 116, 118–19, 130–1, 156–7, 391–3
scalar theory 803
short-range forces 406–27
Great Exhibition, London (1851) 612–13, 615
Great Northern steamer 512
Gresham College, London 333
ground waves 863
Grundriss der Physik und Meteorologie (Müller, 1846) 661, 662
guild system
Britain 329
France 342–3
H
Hall effect 576, 577
Halley’s comet 155
Hamilton’s principle 574
Hamilton–Jacobi theory 391, 827
Harvard Case Histories in Experimental Science 654
Harvard College, USA 351
General Education in Science programme 654
Project Physics Course 667
H-curve 776–7
heat 473–4, 477–88, 594
adiabatic heating and cooling 484–6
caloric theory 416, 420–3, 473, 478, 482–8, 493–503
conduction 489, 490–3
convection 489
as a fluid 766
latent heat 477–88
light relationship 494–5
mechanical explanation of 765–6
mechanical work interconversion 503
as a motion 766–7, 768
movement of 488–92
nature of 492–6
Newton’s law of cooling 491
radiation 489, 493–4, 783
specific heat 478–87, 772–3, 821–2
as a state function 495–502
‘wave theory’ 495
heat capacity 478–9, 484–5
heat death concept 895
heat engine 498–500, 509
Heidelberg, University of 662–3
Helmholtz equation 455
Helmholtz sound synthesiser 614
High-z Supernova Research Team (HZT) 916
Hindenburg programme, Germany 638
Hole argument 806
Hooke’s law 209
Horsely Iron Works, Tipton 511–12
H-theorem 773, 774–5
Hubble constant 899, 906, 911, 916
Huygens’ principle 248, 445, 464–6
(p. 940) hydrodynamics 382–91
hydrogen spectral lines 825
Hydrographic Office, UK 334
hydrometer 713–14
hydrostatic paradox 58–60
hydrostatics 382, 383
hysteresis 740, 760n
I
imponderable fluids 267–9, 407–8, 766
instrumental approaches 274–6
multiple interpretations 269–74
voltaic battery introduction impact 268, 275–85
see also electricity; heat
impulse theorem 390–1
inclined plane experiments 207
industrial instruments 340, 589
industrial physics 736–41, 751
inertia 84, 360–1, 367, 370, 799
infrared rays 494–5
instantaneous axis of rotation 368
instruments and instrument-makers 96–107, 326–52, 584–644
Austro-Hungarian Empire 629–30
balances 99
barometers 103–4, 307, 338, 350
British market 333–41
catalogues 106, 595, 608–9
compasses 99, 334, 343
didactic and teaching instruments 587–8
domestic instruments 593
electrical instruments 286–7, 288, 289–90, 291, 341, 559, 590
electronic instruments 596–7
First World War impact 634–9
Germany 350, 616–24
glass-workers 100–1, 103–4
graduation of scales 330, 335–6
industrial instruments 340, 589
instrument roles 584–5
inter-war years 639–44
Low Countries 345–6, 630
marketing 608–12
materials 98, 100, 330–3, 601–7
mathematical instruments 99–100
optical instruments 100–2, 336–8, 347–8, 604–7
philosophical instruments 338–41
Portugal 346–7, 628
professional instruments 590–3
public demonstrations and trade 303–4, 306–14
research instruments 586–7
Russia 631
Scandinavia 349, 630–1
Spain 628
Switzerland 349–50, 628–9
thermoscopes/thermometers 103, 307
tools 598–600
United States of America 351–2, 631–4
workshop practice and organization 328–30, 597–8, 600–1
integrated electronic circuits 877–8
interference 451–5
Invar 603
iron use in instrument-making 602
Italian instrument-makers 347–9, 627–8
J
Journal of Physical Therapeutics 693
Journal of Scientific Instruments 618
junction transistor 873
Jupiter
eclipses of the moons 180
great inequality 155, 394–6
motion of 122, 136, 156–7, 394–6
K
Kiel, University of 349
kinematics 791
kinetic theory 385, 767–78
gases as particles in motion 768–9
global approaches 779–82
Maxwell–Boltzmann law 771–2
reception of 777–8
systems other than gases 782–4
transport properties of gases 769–71
see also gas theory
Klein–Gordon equation 845
klystron radar tube 866–7
L
labour practices 710–11
Lagrange points 396
Laplace’s equation 366
Laplacian school, Arcueil 270, 272–81, 412–17, 418, 537
latent heat 477–88
Lehrbuch der Experimentalphysik und der Meteorologie (Müller) 661
Lehrbuch der Experimentalphysik (Wüllner) 663
Lehrbuch der mechanischen Naturlehre (Fischer, 1805) 658
Lehrbuch der mechanischen Naturlehre (Fischer) 662
Lehrbuch der Naturlehre (Krie) 662
Lehrbuch der Physik (Eisenlohr, 1836) 662
Lehrbuch der Physik (Müller-Pouillet) 666
Leiden, University of 105–6
Leitfaden der praktischen Physik (Kohlrausch, 1870) 663
Leitfaden für den Unterricht in der Physik (Brettner) 662
lens-making 101–2, 240, 242, 336–7, 604–5
Lenz’s law 556
Lessons in Elementary Physics (Stewart, 1870) 665
light 169–73, 445–6
absorption 468–9
constant speed of 794–6
diffraction 193–6, 453–5, 456
experiments 218–21
heat relationship 494
interference 451–5
optical rotation 462
photon theory 820, 839, 844
polarization 415, 447–50, 456–7, 466
public demonstrations 303
ray optics 447–51
reflection 458, 467
light bulb experiments 739
lighthouse lenses 337–8
lightning rod construction 735
Liouville’s theorem 780
liquid–gas transition 782
logarithms 250–1
Lord Dundas steamer 511–12
Lorentz–Einstein theory 791
loxodrome 256–7
lunar motion 119, 128–9, 135–40
M
machine tools 330, 335, 359–600
Mach’s principle 807–9
Madrid, Science Faculty Mechanics Department 628
Magnetic Crusade 344
magnetic curves/lines of force 561–2, 565–7
intensity 561, 564–6, 571
magnetic field 576–7
see also field theory
magnetic memory 740
magnetism 79–82, 432–3, 439–40, 564–5, 740
experiments 434–42
hysteresis 740, 760n
permanent magnets 740
polarized light response 563
terrestrial 339, 341, 544–5
magneto-electric induction 555
magneto-optical effect 563, 577
magnetostatics 572
mahogany use in instrument-making 332
mass 120–1, 211
centre of 369–70
mass–energy equivalence 798–9
mathematics 13–15, 226–7, 271
calculus 114, 148–9, 154, 249, 251–9, 260
complex numbers 466–7
electrical research approaches 439, 536–9
geometry 238–49
instrument-makers 99–100
Islamic 243
Leibniz 255–9
optics 446, 447, 456–8
pre-calculus 249–51
proportion theory 230–8
status of in the late Renaissance 227–30
matrix mechanics 838–43, 857n
Maxwell’s demon 774
Maxwell–Boltzmann law 771–2
mean free path concept 769, 780
mechanical transformability principle 827–8
Medical Electrology and Radiology journal 693
medicine 679–94
conservation of energy application 686–90
therapeutics 690–3
vitalism and materialism 681–6
Mercury perihelion test 810
mercury use in instrument-making 332, 603
Mersenne’s law 380
metre 344, 698, 701–4, 706, 709
metric measures 344, 704, 706
metrology 698–716
background 699–703
broader historical issues 710–14
electrical resistance standard 706–8, 712
institutionalization 714
labour practices and 710–11
moral aspects 714, 715
seconds pendulum 703–6, 711
Michelson–Morley experiment 730–1, 751, 795–6, 800
microcanonical ensemble 779
microelectronics see electronics industry; transistors
microprocessor revolution 881–6
microscopes 101, 102, 336, 337, 619–20
microwave background radiation 904, 909–12, 915–16
Milky Way 896
Millwall shipbuilding yard, Fairbairn Company 512
mirror-making 98, 100, 348, 602, 604, 606–7
Models and Manufactures exhibition, Glasgow (1840) 510
modern physics 729, 752
origins of 725–7
molecular chaos 776
molecular interactions, Laplacian short-range forces approach 406–27
moments 361–2, 363–4, 367
equilibrium of 367
(p. 942) momentum 51, 363–4
conservation of 120n, 121, 363–4
Moon, motion of 119, 128–9, 130, 135–40, 157, 392–4
nutation 157
More’s law 886
motion
accelerated 27–54, 113, 120, 235–8
experiments 204–12
Galileo’s studies 26–54, 230–2, 235–8
Newton’s Laws 119–26, 362–3
rigid bodies 366–71
multiple resonance 746
multiplication rule 841–2
multiverse hypotheses 918–19
N
nanotechnology 886–7
National Physical Laboratory 626
Navier–Stokes equation 770–1
navigational instruments 99, 334, 339, 345
Nebraska, University of, Brace Laboratory lecture room 589
nerve vibration therapy 691–2
neurasthenia 688
neutrino species 913
Newcomen steam engine model 510
Newton’s rings 181–6, 189–93, 220–1, 449
Notions générales de physique et de météorologie (Pouillet) 660
N-rays 692
O
observatories 327, 333, 341
France 342
Greenwich 333–4
Italy 347, 348
Paris 342, 536
United States 351–2
ocean depth recording 339–41
ohm 707, 750
opacity 186
optical indicatrix 459
optical instruments 100–2, 336–8, 347–8, 604–7
First World War 634–8
inter-war years 639–44
military 591–2, 606
optics 445–70
Cartesian 85, 86–8, 93n
experiments 218–21
geometrical optics 846
mathematical 446, 447, 456–8
Newtonian 166–96
ray optics 447–51
Optiks (Newton) 166–96
orreries 310–11
orthographic projection instrument 245
Oxford, University of 333, 338
P
Padua, University of 29–30, 327
accelerated motion studies 235–8
parallelogram rule 361–2
paramagnetic materials 565
Paris Universal Exhibition (1900) 622–3
partial differential equations 390
Paschen-Back effect 830–1
Peace of Augsburg (1555) 10
pendulum experiments 208–12
percussion apparatus 587
periodic table 834–5
photoelectric effect 819, 820
photon theory 820, 839, 844
physical sciences 200
Physical Science Study Committee (PSSC) project, USA 655–6, 666–8
Physikalisches Praktikum (Ilberg) 663
Physikalisches Praktikum (Westphal) 663
Physikalisches Praktikum (Wiedemann) 663
Physikalische Technik (Frick, 1850) 662
physiology 679–80
see also medicine
piezoelectricity 749
Pisa, University of 229
falling body studies 26, 204
Planck distribution 818, 821
planetary motion 13, 73–8, 86, 88–9, 94–5n, 391–6
Descartes’ vortex mechanics 73–8, 86, 88–9, 94–5n, 132
Earth–Moon–Sun system 130, 135, 138–40, 157, 392–4
great inequality 155, 394–6
Kepler problem 151, 250
perception of Earth’s motion 792–3
Sun–Jupiter–Saturn system 394–6
see also cosmology
platinum use in instrument-making 332, 602
point-contact transistor 873
polarization of light 415, 447–9, 456–7, 466
chromatic polarization 449–51, 456
magnetism effect 562–3
Portuguese instrument-makers 346–7, 628
potassium discovery 282, 287, 534
potential 365–6
power 299–300
Practical Physics (Guthrie, 1878) 665
pre-calculus 249–51
Précis élémentaire de physique expérimentale (Biot, 1817) 659, 661
precision instruments 650n
primary colours 172, 176–7, 197n
(p. 943) principal determination 63, 65, 68, 71, 93n
Principia (Newton) 109–15, 119–61, 358, 392–3
prize competitions, Institut de France 413–16, 418–19, 485–6, 489, 538
professional instruments 590–3
projectile motion 27–54, 132–3, 231–2
experiments 207–8
see also motion
proportion theory 230–8
public demonstrations 302–5, 594
degrees of engagement 314–17
demonstration devices 306–14
knowledge dissemination 314–15
Pulkovo workshop, Russia 631
Puy-de Dôme experiment 213–14
Pyrex 604
Pythagoras’ theorem 804
Q
quantum physics 725–6, 836–51
crisis 836–7
early development of 815–23
matrix mechanics 838–43, 857n
Solvay Conference significance 822–3
uncertainty principle 848–50
R
radiation
black-body 741, 760n, 783, 816, 818, 844–5, 894
electromagnetic 579–83, 745–6
of heat 489, 493–4, 783
radioactivity 750
radio astronomy 908–9
radio communications 863–7
gain 864
transistor radio introduction 875
vacuum tubes 864, 865–7
rainbow 87, 219, 838
Rayleigh–Jeans law 754n, 821
recurrence theorem 817
redshifts 811, 898, 899, 901
reflecting telescope 167–9, 348
reflection
metallic 467
partial reflection and refraction 458
refraction 178–81, 411–14, 459–60
conical refraction 459
experiments 218–19
partial reflection and refraction 458
refractive index 431n
relativity theory 125–6, 361, 740–1, 790, 814
equivalence principle 800–2
experimental predictions 809–11
experimental tests of special relativity 799–800
general covariance 805–7
general theory 801–2
Mach’s principle 807–9
mass–energy equivalence 798–9
relativity principle 790–3
relativity of simultaneity 796–8
spacetime curvature 802–5
speed of light constancy 794–6
Revue d’optique théorique et expérimentale 641–2
Rice University 872
Riemannian spaces 465
rigid body dynamics 366–71
Royal Observatory, Greenwich 333–4
Nautical Almanac 334
Royal Observatory, Paris 342
rumbatron 866–7
Russian instrument-makers 631
S
Scandinavian instrument-makers 349, 630–1
Schottky field effect 869, 873
scientific instruments see instruments and instrument-makers
Scientific Revolution 7–21, 227
absence of in Europe 10
cadres 15–17
institutions 17–20
revolutionary programme 13–15
second revolution 426
scientist-engineers 737–41
seconds pendulum standard 703–6, 711
seismometers 349
selectionism 448–9
semiconductor development 867–73
germanium use 870, 872–3
impurity issues 870
silicon advantages 876
see also transistors
sextants 334, 335–6
ship building 510–18, 523–8
Clyde shipyards 523–8
coal consumption issues 513–16
Silicon Valley 865, 876
silver use in instrument-making 332, 602
Snell’s law of refraction 169, 174, 179–80
sodium discovery 282, 287, 534
solar redshift 811
solid state materials 872
Solvay conference, 1911 722, 724–7, 814, 822, 823, 829
sound, speed determination 211–12, 484
spacetime curvature 802–5
Spanish instrument-makers 628
spark-gap devices 863
specific heat 478–87, 821–2
gases 772–3, 777
see also heat
spectacle-makers 100, 336–7
spectroscopy 893
(p. 944) speed of sound determination 211–12, 484
standard weights and measures 699–716
background 699–703
Britain 329–30, 335, 706–8, 714
electrical resistance 706–8, 712
France 344, 703–4, 714
Germany 705–6, 708, 714
labour practices and 710–11
moral aspects 714, 715
seconds pendulum 703–6, 711
Stanford University 872
Stark effect 827, 846
state function, heat as 495–502
statistical mechanics 765–6, 778–9, 784–5
steam engines
efficiency studies 497, 510, 739
use by instrument-makers 600
steam ship design 510–18
coal consumption issues 513–16
steel use in instrument-making 602
Steiner’s theorem 367
string theory 918
Structure of Scientific Revolutions, The (Kuhn, 1962) 654, 671, 836
submarine telegraph cables 558, 706–7, 738
Sun
atmospheric helium 893
surface temperature 894
sundial-making 243–6
sunspots 80–2, 94n, 95n
Supernova Cosmology Project (SCP) 916
surveying instruments 590–1
Swiss instrument-makers 349–50, 628–9
T
tacheometer-theodolite 591
teaching instruments 587–8
Tecnomasio Italiano instrument-makers, Milan 627
telegraphy 557–8, 738, 740, 757n
submarine cables 558, 706–7, 738
telescopes 101–2, 336–7, 347–8
reflecting telescope 167–9, 348
temperature 474
absolute temperature concept 474–5
textbooks 651–3
Britain 664–5
cosmology 911
editors 664
genre 657–66
Germany 661–3
history 653–7
theodolites 335, 336, 591
theorem of parallel axes 367
thermodynamics 495
bridge to mechanics 767–8, 774–5
classical thermodynamics emergence 502–5
entropy 496, 504, 775–6, 783
first law 503
second law 503–4, 774–5
see also energy; heat
thermometer-makers 103
thermometers 307, 474
thermometry 464–6
fixed points 474–6
torsion balance electrometer 279, 440, 559, 560, 702
Traité de physique élémentaire (Haüy, 1803) 658
Traité de physique expérimentale et mathématique (Biot, 1816) 659, 661
Traité élémentaire de physique expérimentale et appliquée (Ganot, 1851) 656–7, 663–4
Traité élémentaire de physique (Péclet) 660
transatlantic telegraph cables 558, 706–7
transistors 861, 867–73
definition 867
development of 870
entrepreneurship 875–7
finfet nano-device 886–7
future directions 886–7
innovation management 879–80
junction transistor 873
manufacturing issues 873–8
More’s law 886
planar transistor 877
point-contact transistor 873
silicon use 876
Treatise on Natural Philosophy (Thomson & Tait, 1867) 665, 686
triodes 596
U
uncertainty principle 848–50
United Kingdom
First World War 634–6
inter-war years 639–40
metrology 329–30, 335, 706–7, 714
textbooks 664–5
United States of America
First World War 637–8
instrument-makers 351–2, 631–4, 637–8, 643–4
inter-war years 643–4
textbooks 664–5
units, systems of 360
universal mathematical method (Descartes) 69–70
universe
age of 904
background microwave radiation 904, 909–12, 915–16
early universe studies 903–5, 912–15
entropy increase 894–5
expanding universe 899–903, 906–7, 908
(p. 945) far-future studies 915
heat death concept 895
inflation theory 914–15
multiverse hypotheses 918–19
steady-state model 905–9
universities 301
mathematics teaching 228–9
observatories 342
see also specific cities
Uppsala, University of 349
V
vacuum heat properties 484–6
vacuum pumps see air pumps
vacuum tube construction 865–7
vectors 361–2
velocity-potential theorem 390
vibration theory 379–82
Vienna, Imperial and Royal Polytechnic 629
viscosity, gases 770–1
vitalism 681–6
void-in-the-void experiment 214–15
Volta-electric induction 554
voltaic pile 533–6
introduction of 268, 275–85, 535
medical interest 681–2
Vorschule der Experimental Physik (Weinhold) 662
vortex celestial mechanics 13, 73–8, 86, 88–9, 94–5n
Newton’s arguments against 132, 134, 144–5, 154
W
wave equation 381–2, 389, 846
wave mechanics 843–8
wave theory of light 198n, 249, 413, 414, 418–19, 458–64
Fresnel’s theory 417–19, 455, 457–8, 464–6
Huygen’s principle 249, 464–6
inclination factor 464, 465
Newton’s views 175, 189, 193, 413
Young’s theory 451–2
see also light; optics
weakly interacting massive particles (WIMPs) 917
Wheatstone wave machine 588
Wien’s law of displacement 818, 852n, 894
wood use in instrument-making 332, 601
work, mechanical 365
heat interconversion 503
X
X-rays 692, 747
electrical discharge by 747
Y
yard, standard 329–30, 335, 710
Z
Zeeman effect 830–3
anomalous 830–3, 836
Zeitschrift für den physikalischen und chemischen Unterricht 618
Zeitschrift für Instrumentenkunde 618