Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 24 January 2020

Abstract and Keywords

Bayesian networks are now among the leading architectures for reasoning with uncertainty in artificial intelligence. This chapter concerns their story, namely what they are, how and why they came into being, how we obtain them, and what they actually represent. First, it is shown that a standard application of Bayes’ Theorem constitutes inference in a two-node Bayesian network. Then more complex Bayesian networks are presented. Next the genesis of Bayesian networks and their relationship to causality is presented. A technique for learning Bayesian networks from data follows. Finally, a discussion of the philosophy of the probability distribution represented by a Bayesian network is provided.

Keywords: Bayesian network, Bayes’ Theorem, causality, Markov condition, relative frequency, subjective probability

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.