Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 12 April 2021

Abstract and Keywords

This article focuses on spintronics with metallic nanowires. It begins with a review of the highlights of spintronics research, paying attention to the very important developments accomplished with tunnel junctions. It then considers the effect of current on magnetization before discussing spin diffusion and especially spin-dependent conductivities, spin-diffusion lengths, and spin accumulation. It also examines models for spin-polarized currents acting on magnetization, current-induced magnetization switching, and current-driven magnetic excitations. It concludes with an overview of resonant-current excitations, with emphasis on spin-valves and tunnel junctions as well as resonant excitation of spin-waves, domain walls and vortices. In addition, the article reflects on the future of spintronics, citing in particular the potential of the spin Hall effect as the method of generating spin accumulation, free of charge accumulation.

Keywords: spintronics, metallic nanowires, tunnel junctions, magnetization, spin diffusion, spin accumulation, magnetization switching, magnetic excitations, resonant-current excitations, spin Hall effect

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.