Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 12 April 2021

Abstract and Keywords

This article describes three-dimensional open architectures with free-standing grid-like nanostructure arrays as photocatalytic electrodes for a new type of dye-sensitized solar cell. It introduces a novel technique for fabricating a series of semiconducting oxides with grid-like nanostructures replicated from the biotemplates. These semiconducting oxides, including n-type titanium dioxide or p-type nickel oxide nanogrids, were sensitized with the dye molecules, then assembled into 3D stacked-grid arrays on a flexible substrate by means of the Langmuir–Blodgett method or the ink-jet printing technique for the photocatalytic electrodes. The article first considers the fabrication of photoelectrodes with 2D grid-like nanostructures by means of the biotemplating approach before discussing the assembly and photophysicsof grid-like nanostructures into 3D open architectures for the photocatalytic electrodes.

Keywords: open architecture, photocatalytic electrodes, dye-sensitized solar cell, semiconducting oxides, grid-like nanostructures, biotemplates, titanium dioxide, nickel oxide, nanogrids, photophysics

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.