Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 17 September 2021

Abstract and Keywords

This article examines the effect of electron-phonon coupling on the thermopower of low-dimensional structures. It begins with a review of the theoretical approaches and the basic concepts regarding phonon drag under different transport regimes in two- and one-dimensional systems. It then considers the thermopower of two-dimensional semiconductor structures, focusing on phonon drag in semi-classical two-dimensional electron gases confined in semiconductor nanostructures. It also analyzes the influence of phonon drag on the thermopower of semiconductor quantum wires and describes the phonon-drag thermopower of doped single-wall carbon nanotubes. The article compares theory and experiment in order to demonstrate the role of phonon-drag and electron-phonon coupling in the thermopower in two and one dimensions.

Keywords: electron-phonon coupling, thermopower, low-dimensional structures, phonon drag, transport regimes, two-dimensional electron gases, semiconductor nanostructures, semiconductor quantum wires, single-wall carbon nanotubes

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.