Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 15 June 2021

Abstract and Keywords

This article investigates vortex states and phases in superconducting mesoscopic dots, antidots, and other structures using a scanning superconducting quantum interference device (SQUID) microscope. It begins with an introduction to the phenomenology of superconductivity and the fundamentals of vortex confinement in mesoscopic superconductors. It then provides a background on the SQUID microscope, followed by a discussion of how a high-resolution scanning SQUID microscope was developed. It also describes what the scanning SQUID microscopy revealed about quantized flux in superconducting rings, as well as vortex confinement in microscopic superconducting disks, triangles, and squares. Finally, it presents the results of direct observation of an extended penetration depth in thin films and vortex states in high-temperature superconductors.

Keywords: vortex states, mesoscopic dots, antidots, superconductivity, vortex confinement, mesoscopic superconductors, scanning SQUID microscope, quantized flux, superconducting rings, superconducting disks

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.