Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 03 August 2020

Abstract and Keywords

Visual word recognition is traditionally viewed as a process of activating a lexical representation stored in long-term memory. Although this activation framework has been valuable in guiding research on visual word recognition and remains the dominant force, an alternative framework has emerged in the last decade. The Bayesian Reader framework, proposed by Norris (2006, 2009; Norris & Kinoshita, 2012a), regards the decision processes involved in a task as integral to explaining visual word recognition, and its central tenet is that human readers approximate optimal Bayesian decision-makers operating on noisy perceptual input. This chapter focuses on two issues fundamental to visual word recognition—the role of word frequency, and the representation of letter order—and describes how the Bayesian Reader framework provides a principled account of the recent findings related to these issues that are challenging to the activation framework.

Keywords: visual word recognition, interactive activation, masked priming, letter-order coding, word frequency, Bayesian Reader

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.