Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 17 February 2020

Abstract and Keywords

This article discusses the role of ‘spatial interdependence’ between units of analysis by using a symmetric weighting matrix for the units of observation whose elements reflect the relative connectivity between unit i and unit j. It starts by addressing spatial interdependence in political science. There are two workhorse regression models in empirical spatial analysis: spatial lag and spatial error models. The article then addresses OLS estimation and specification testing under the null hypothesis of no spatial dependence. It turns to the topic of assessing spatial lag models, and a discussion of spatial error models. Moreover, it reports the calculation of spatial multipliers. Furthermore, it presents several newer applications of spatial techniques in empirical political science research: SAR models with multiple lags, SAR models for binary dependent variables, and spatio-temporal autoregressive (STAR) models for panel data.

Keywords: spatial interdependence, political science, spatial lag models, spatial error models, spatio-temporal autoregressive model, SAR model, OLS

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.