Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 22 October 2020

(p. 531) References

(p. 531) References

Aad, G., Abajyan, T., Abbott, B., et al. (2012). Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, 716, 1–29.Find this resource:

Abazajian, K. N., Calabrese, E., Cooray, A., et al. (2011). Cosmological and astrophysical neutrino mass measurements, Astroparticle Physics, 35, 177–84.Find this resource:

Abbe, C. (1867). On the distribution of nebulae in space, Monthly Notices of the Royal Astronomical Society, 27, 257–64.Find this resource:

Abbott, B. P., Abbott, R., Abbott, T. D., et al. (2016). Observation of gravitational waves from a binary black hole merger, Physical Review Letters, 116, 061102.Find this resource:

Abbott, B. P., Abbott, R., Abbott, T. D., et al. (2017). GW170817: observation of gravitational waves from a binary neutron star inspiral, Physical Review Letters, 119, 161101.Find this resource:

Abell, G. O. (1958). The distribution of rich clusters of galaxies, Astrophysical Journal Supplement, 3, 221–88.Find this resource:

Abell, G. O. (1962). Membership of clusters of galaxies, in Problems of Extragalactic Research, ed. McVittie, G. C., pp. 213–38. New York: Macmillan.Find this resource:

Abell, G. O., Corwin, H. G., Jr., and Olowin, R. P. (1989). A catalogue of rich clusters of galaxies, Astrophysical Journal Supplement, 70, 1–138.Find this resource:

Abraham, R. G., Tanvir, N. R., Santiago, B., et al. (1996). Galaxy morphology to I = 25 mag in the Hubble Deep Field, Monthly Notices of the Royal Astronomical Society, 279, L47–L52.Find this resource:

Adams, F. C. (2008). Stars in other universes: stellar structure with different fundamental constants, Journal of Cosmology and Astroparticle Physics, 8, 010.Find this resource:

Adams, F. C. and Laughlin, G. (1997). A dying universe: the long-term fate and evolution of astrophysical objects, Reviews of Modern Physics, 69, 337–72.Find this resource:

Adams, F. C. and Laughlin, G. (2016). The Five Ages of the Universe: Inside the Physics of Eternity. New York: Simon and Schuster.Find this resource:

Adams, F. C., Coppessa, K. R., and Bloch, A. M. (2015). Planets in other universes: habitability constraints on density fluctuations and galactic structure, Journal of Cosmology and Astroparticle Physics, 9, 030.Find this resource:

Adams, W. S. (1941). Some results with the Coudé spectrograph of the Mount Wilson Observatory, Astrophysical Journal, 93, 11.Find this resource:

Ade, P. A. R., Aghanim, N., Ahmed, Z., et al. (2015). Joint analysis of BICEP2/Keck Array and Planck data, Physical Review Letters, 114, 101301.Find this resource:

Afonso, C., Albert, J. N., Andersen, J., et al. (2003). Limits on galactic dark matter with 5 years of EROS SMC data, Astronomy and Astrophysics, 400, 951–6.Find this resource:

Afshordi, N. and Magueijo, J. (2016). Critical geometry and thermal big bang, Physical Review D, 94, 101301.Find this resource:

(p. 532) Aguirre, A. (2007). Making predictions in a multiverse: conundrums, dangers, coincidences, in Universe or Multiverse?, ed. Carr, B., pp. 367–81. Cambridge: Cambridge University Press.Find this resource:

Aguirre, A. and Gratton, S. (2002). Steady-state eternal inflation, Physical Review D, 65, 083507.Find this resource:

Aguirre, A., Gratton, S., and Johnson, M. C. (2007a). Hurdles for recent measures in eternal inflation, Physical Review D, 75, 123501.Find this resource:

Aguirre, A., Johnson, M. C., and Shomer, A. (2007b). Towards observable signatures of other bubble universes, Physical Review D, 74, 063509.Find this resource:

Aharonian, F. A. and Akerlof, C. W. (1997). Gamma-ray astronomy with imaging atmospheric Cherenkov telescopes, Annual Reviews of Nuclear Science, 47, 273–314.Find this resource:

Albrecht, A. and Magueijo, J. (1999). A time varying speed of light as a solution to cosmological puzzles, Physical Review D, 59, 043516.Find this resource:

Albrecht, A. and Steinhardt, P. J. (1982a). Cosmology for grand unified theories with radiatively induced symmetry breaking, Physical Review Letters, 48, 1220–3.Find this resource:

Albrecht, A. and Steinhardt, P. J. (1982b). Reheating an inflationary universe, Physical Review Letters, 48, 1437–40.Find this resource:

Albrecht, A., Coulson, D., Ferreira, P., et al. (1996). Causality, randomness, and the microwave background, Physical Review Letters, 76, 1413–16.Find this resource:

Alcock, C., Akerlof, C. W., Allsman, R. A., et al. (1993a). Possible gravitational microlensing of a star in the Large Magellanic Cloud, Nature, 365, 621–3.Find this resource:

Alcock, C., Allsman, R. A., Alves, D. R., et al. (2000). The MACHO Project: microlensing results from 5.7 years of Large Magellanic Cloud observations, Astrophysical Journal, 542, 281–307.Find this resource:

Alcock, C., Allsman, R. A., Axelrod, T. S., et al. (1993b). The MACHO Project – a search for the dark matter in the Milky Way, in Sky Surveys: Protostars to Protogalaxies, ed. Soifer, T., pp. 291–6. San Francisco: Astronomical Society of the Pacific Conference Series.Find this resource:

Alfvén, H. (1966). Worlds–Antiworlds: Antimatter in Cosmology. San Francisco: W. H. Freeman.Find this resource:

Alfvén, H. (1983). On hierarchical cosmology, Astrophysics and Space Science, 89, 313–24.Find this resource:

Alfvén, H. (1984). Cosmology: myth or science?, Journal of Astrophysics and Astronomy, 5, 79–98.Find this resource:

Alfvén, H. and Herlofson, N. (1950). Cosmic radiation and radio stars, Physical Review, 78, 616.Find this resource:

Alfvén, H. and Klein, O. (1962). Matter–antimatter annihilation and cosmology, Arkiv för Fysik, 23, 187–94.Find this resource:

Aliu, E., Andringa, S., Aoki, S., et al. (2005). Evidence for muon neutrino oscillation in an accelerator-based experiment, Physical Review Letters, 94, 081802.Find this resource:

Allen, S. W., Rapetti, D. A., Schmidt, R. W., et al. (2008). Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters, Monthly Notices of the Royal Astronomical Society, 383, 879–96.Find this resource:

Almassi, B. (2009). Trust in expert testimony: Eddington’s 1919 eclipse expedition and the British response to general relativity, Studies in History and Philosophy of Modern Physics, 49, 57–67.Find this resource:

Alpher, R. A. and Herman, R. C. (1948). Evolution of the universe, Nature, 162, 774–5.Find this resource:

Alpher, R. A. and Herman, R. C. (1949). Remarks on the evolution of the expanding universe, Physical Review, 75, 1089–95.Find this resource:

Alpher, R. A. and Herman, R. C. (1950). Theory of the origin and relative distribution of the elements, Reviews of Modern Physics, 22, 153–212.Find this resource:

Alpher, R. A. and Herman, R. C. (1958). On nucleon–antinucleon symmetry in cosmology, Science, 128, 904.Find this resource:

Alpher, R. A. and Herman, R. C. (1988). Reflections on early work on ‘big bang’ cosmology, Physics Today, 41, 24–34.Find this resource:

Alpher, R. A. and Herman, R. C. (1990). Early work on ‘big-bang’ cosmology and the cosmic blackbody radiation, in Modern Cosmology in Retrospect, ed. Bertotti, B., Balbinot, R., and Bergia, S., pp. 129–58. Cambridge: Cambridge University Press.Find this resource:

Alpher, R. A. and Herman, R. C. (2001). Genesis of the Big Bang. Oxford: Oxford University Press.Find this resource:

Alpher, R. A., Bethe, H., and Gamow, G. (1948). The origin of the chemical elements, Physical Review, 73, 803–4.Find this resource:

(p. 533) Alpher, R. A., Follin, J. W., and Herman, R. C. (1953). Physical conditions in the initial stages of the expanding universe, Physical Review, 92, 1347–61.Find this resource:

Alpher, V. S. (2012). Ralph A. Alpher, Robert C. Herman, and the cosmic microwave background radiation, Physics in Perspective, 14, 300–34.Find this resource:

Amaldi, E. (1989). The search for gravitational waves, in Cosmic Gamma Rays, Neutrinos, and Related Astrophysics, ed. Shapiro, M. M. and Wefel, J. P., pp. 563–607. Dordrecht: Springer-Verlag.Find this resource:

Anders, E. (1963). Meteorite ages, in The Moon, Meteorites and Comets – The Solar System IV, ed. Middelhurst, B. M. and Kuiper, G. P., pp. 402–95. Chicago: University of Chicago Press.Find this resource:

Anderson, J. D. and Williams, J. G. (2001). Long-range tests of the equivalence principle, Classical and Quantum Gravity, 18, 2447.Find this resource:

Anderson, J. D., Esposito, P. B., Martin, W., et al. (1975). Experimental test of general relativity using time-delay data from Mariner 6 and Mariner 7, Astrophysical Journal, 200, 221–33.Find this resource:

Anderson, J. D., Keesey, M. S., Lau, E. L., et al. (1978). Tests of general relativity using astrometric and radio metric observations of the planets, Acta Astronautica, 5, 43–61.Find this resource:

Anderson, L., Aubourg, É., Bailey, S., et al. (2014). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, Monthly Notices of the Royal Astronomical Society, 441, 24–62.Find this resource:

Anderson, W. (1929). Gewöhnliche Materie und Strahlende Energie als Verschiedene “Phasen” eines und Desselben Grundstoffes (Ordinary matter and radiation energy as different phases of the same underlying matter), Zeitschrift für Physik, 54, 433–44.Find this resource:

Ansoldi, S. and Guendelman, E. I. (2007). Solitons as key parts to produce a universe in the laboratory, Foundations of Physics, 37, 712–22.Find this resource:

Antoniadis, I. and Cotsakis, S. (2017). Infinity in string cosmology: a review through open problems, International Journal of Modern Physics D, 26, 1730009.Find this resource:

Antonucci, R. R. and Miller, J. S. (1985). Spectropolarimetry and the nature of NGC 1068, Astrophysical Journal, 297, 621–32.Find this resource:

Arp, H. C. (1989). Quasars, Redshifts and Controversies. Cambridge: Cambridge University Press.Find this resource:

Arrhenius, S. (1903). Lehrbuch der kosmischen Physik. Leipzig: Hirzel.Find this resource:

Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe. New York: Harper & Brothers.Find this resource:

Arrhenius, S. (1909). Die Unendlichkeit der Welt, Scientia, 5, 217–29.Find this resource:

Astashenok, A. V., Nojiri, S., Odintsov, S. D., et al. (2012). Phantom cosmology without Big Rip singularity, Physics Letters B, 709, 396–403.Find this resource:

Atkinson, R. D. (1931a). Atomic synthesis and stellar energy I, Astrophysical Journal, 73, 250–95.Find this resource:

Atkinson, R. D. (1931b). Atomic synthesis and stellar energy II, Astrophysical Journal, 73, 308–47.Find this resource:

Aubourg, É., Bailey, S., Bautista, J. E., et al. (2015). Cosmological implications of baryon acoustic oscillation measurements, Physical Review D, 92, 123516.Find this resource:

Auger, P., Ehrenfest Jr., P., Maze, R., et al. (1939). Extensive air showers, Reviews of Modern Physics, 11, 288–91.Find this resource:

Avelino, P. P., de Carvalho, J. P. M., and Martins, C. J. A. P. (2001). Can we predict the fate of the Universe?, Physics Letters B, 501, 257–63.Find this resource:

Aver, E., Olive, K. A., Porter, R. L., et al. (2013). The primordial helium abundance from updated emissivities, Journal of Cosmology and Astroparticle Physics, 11, 017.Find this resource:

(p. 534) Axford, W. I., Leer, E., and Skadron, G. (1977). The acceleration of cosmic rays by shock waves, Proceedings of the 15th International Cosmic Ray Conference, 11, 132–5.Find this resource:

Azhar, F. (2014). Prediction and typicality in multiverse cosmology, Classical and Quantum Gravity, 31, 035005.Find this resource:

Baade, W. (1926). Über eine Möglichkeit, die Pulsationstheorie der δ-Cephei-Veränderlichen zu Prüfen (On a possible method of testing the pulsation theory of the variations of δ-Cephei), Astronomische Nachrichten, 228, 359–62.Find this resource:

Baade, W. (1952). A revision of the extra-galactic distance scale, Transactions of the International Astronomical Union, 8, 397–8.Find this resource:

Baade, W. and Gaposchkin, C. H. P. (1963). Evolution of Stars and Galaxies. Cambridge, MA: Harvard University Press.Find this resource:

Baade, W. and Minkowski, R. (1954). Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A, Astrophysical Journal, 119, 206–14.Find this resource:

Baade, W. and Zwicky, F. (1934a). Cosmic rays from super-novae, Proceedings of the National Academy of Sciences, 20, 259–63.Find this resource:

Baade, W. and Zwicky, F. (1934b). On super-novae, Proceedings of the National Academy of Sciences, 20, 254–9.Find this resource:

Baade, W. and Zwicky, F. (1938). Photographic light-curves of the two supernovae in IC 4182 and NGC 1003, Astrophysical Journal, 88, 411–21.Find this resource:

Babbedge, T. S. R., Rowan-Robinson, M., Vaccari, M., et al. (2006). Luminosity functions for galaxies and quasars in the Spitzer Wide-area Infrared Extragalactic Legacy Survey, Monthly Notices of the Royal Astronomical Society, 370, 1159–80.Find this resource:

Bahcall, N. A. (2000). Clusters and cosmology, Physics Reports, 333, 233–44.Find this resource:

Baker, T., Psaltis, D., and Skordis, C. (2015). Linking tests of gravity on all scales: from the strong-field regime to cosmology, Astrophysical Journal, 802, 63.Find this resource:

Balashov, Y. (1994). Uniformitarianism in cosmology: background and philosophical implications of the steady-state theory, Studies in History and Philosophy of Science Part A, 25, 933–58.Find this resource:

Balashov, Y. (2002). Laws of Physics and the Universe. Boston: Birkhäuser, pp. 107–48.Find this resource:

Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophysical Journal, 376, 214–33.Find this resource:

Barbosa, D., Bartlett, J. G., Blanchard, A., et al. (1996). The Sunyaev–Zeldovich effect and the value of Ω0, Astronomy and Astrophysics, 314, 13–17.Find this resource:

Barbour, J. B. (1990). The part played by Mach’s principle in the genesis of relativistic cosmology, in Modern Cosmology in Retrospect, ed. Bertotti, B. et al., pp. 47–66. Cambridge: Cambridge University Press.Find this resource:

Barbour, J. B. and Pfister, H. (Eds.) (1995). Mach’s Principle: From Newton’s bucket to Quantum Gravity, Einstein Studies Vol. 6. Boston: Birkhäuser.Find this resource:

Bardeen, J. M. (1970). Kerr metric black holes, Nature, 226, 64–5.Find this resource:

Bardeen, J. M. (1980). Gauge-invariant cosmological perturbations, Physical Review D, 22, 1882–905.Find this resource:

Bardeen, J. M., Bond, J. R., Kaiser, N., et al. (1986). The statistics of peaks of Gaussian random fields, Astrophysical Journal, 304, 15–61.Find this resource:

Bardeen, J. M., Steinhardt, P. J. and Turner, M. J. (1983). Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Physical Review D, 28, 679–93.Find this resource:

Barnes, L. A. (2012). The fine-tuning of the universe for intelligent life, Publications of the Astronomical Society of Australia, 29, 529–64.Find this resource:

(p. 535) Barnes, L. A. and Lewis, G. F. (2017). Producing the deuteron in stars: anthropic limits on fundamental constants, Journal of Cosmology and Astroparticle Physics, 7, 036.Find this resource:

Barrow, J. D. (2002). From Alpha to Omega: The Constants of Nature. London: Jonathan Cape.Find this resource:

Barrow, J. D. and Tipler, F. J. (1986). The Anthropic Cosmological Principle. New York: Oxford University Press.Find this resource:

Barrow, J. D., Juszkiewicz, R., and Sonoda, D. H. (1985). Universal rotation – how large can it be?, Monthly Notices of the Royal Astronomical Society, 213, 917–43.Find this resource:

Barthel, P. D. (1989). Is every quasar beamed?, Astrophysical Journal, 336, 606–11.Find this resource:

Barthel, P. D. (1994). Unified schemes of FR2 radio galaxies and quasars, in First Stromlo Symposium: Physics of Active Galactic Nuclei, ed. Bicknell, G. V., Dopita, M. A., and Quinn, P. J., pp. 175–86. San Francisco: ASP Conference Series, Vol. 54.Find this resource:

Bashinsky, S. and Seljak, U. (2004). Signatures of relativistic neutrinos in CMB anisotropy and matter clustering, Physical Review D, 69, 083002.Find this resource:

Basko, M. M. and Polnarev, A. G. (1980). Polarization and anisotropy of the RELICT radiation in an anisotropic universe, Monthly Notices of the Royal Astronomical Society, 191, 207–15.Find this resource:

Batchelor, R., Jauncey, D. L., Johnston, K. J., et al. (1976). First global radio telescope, Soviet Astronomy Letters, 2, 181–3.Find this resource:

Baum, W. A., Johnson, F. S., Oberly, J. J., et al. (1946). Solar ultraviolet spectrum to 88 kilometers, Phyiscal Review, 70, 781–2.Find this resource:

Baumann, D. (2007). On the quantum origin of structure in the inflationary universe. arXiv preprint arXiv:0710.3187.Find this resource:

Becker, B. (2011). Unravelling Starlight: William and Margaret Huggins and the Rise of the New Astronomy. Cambridge: Cambridge University Press.Find this resource:

Becker, K., Becker, M., and Schwarz, J. H. (2006). String Theory and M-theory: A Modern Introduction. Cambridge: Cambridge University Press.Find this resource:

Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. (2006). The Hubble Ultra Deep Field, Astronomical Journal, 132, 1729–55.Find this resource:

Beisbart, C. (2009). Can we justifiably assume the cosmological principle in order to break model underdetermination in cosmology?, Journal for General Philosophy of Science, 40, 175–205.Find this resource:

Belenkiy, A. (2013). ‘The waters I am entering no one yet has crossed:’ Alexander Friedman and the origins of modern cosmology, in Origins of the Expanding Universe: 1912–1932, ed. Way, M. and Hunter, D., pp. 71–96. Astronomical Society of the Pacific Conference Series.Find this resource:

Bell, A. R. (1978). The acceleration of cosmic rays in shock fronts. I, Monthly Notices of the Royal Astronomical Society, 182, 147–56.Find this resource:

Bell-Burnell, J. (1983). The discovery of pulsars, in Serendipitous Discoveries in Radio Astronomy, eds. Kellermann, K. I. and Sheets, B., pp. 160–70. Green Bank, WV: National Radio Astornomy Publications.Find this resource:

Belopolski, A. (1929). Die Fixsterne und extra-galaktischen Nebel, Astronomische Nachrichten, 236, 357.Find this resource:

Bennett, A. S. (1962). The revised 3C catalogue of radio sources, Memoirs of the Royal Astronomical Society, 67, 163–72.Find this resource:

Bennett, C. L., Banday, A. J., Gorski, K. M., et al. (1996). Four-year COBE DMR cosmic microwave background observations: maps and basic results, Astrophysical Journal Letters, 464, L1.Find this resource:

Bennett, C. L., Bay, M., Halpern, M., et al. (2003). The Microwave Anisotropy Probe Mission, Astrophysical Journal, 583, 1–23.Find this resource:

(p. 536) Berendzen, R. and Hart, R. (1973). Adriaan van Maanen’s influence on the island universe theory, Journal for the History of Astronomy, 4, 46–56 and 73–98.Find this resource:

Berendzen, R., Hart, R., and Seeley, D. (1984). Man Discovers the Galaxies. New York: Science History Publications.Find this resource:

Berendzen, R. and Hoskin, M. A. (1971). Astronomical Society of the Pacific Leaflet, No. 504: Hubble’s Announcement of Cepheids in Spiral Nebulae. Astronomical Society of the Pacific Publications.Find this resource:

Bergia, S. and Mazzoni, L. (1999). Genesis and evolution of Weyl’s reflections on de Sitter’s universe, in The Expanding Worlds of General Relativity. Einstein Studies Vol. 7, ed. Goenner, H. et al., pp. 325–42. Boston: Birkhäuser.Find this resource:

Bergmann, P. G. (1970). Cosmology as a science, Foundations of Physics, 1, 17–22.Find this resource:

Beringer, J., Arguin, J., Barnett, R., et al. (2012). Review of particle physics, Physical Review D, 86, 280–8.Find this resource:

Bernal, J. L., Verde, L., and Riess, A. G. (2016). The trouble with H0, Journal of Cosmology and Astroparticle Physics, 10, 019.Find this resource:

Bersanelli, M., Witebsky, C., Bensadoun, M., et al. (1989). Measurements of the cosmic microwave background radiation temperature at 90 GHz, Astrophysical Journal, 339, 632–7.Find this resource:

Bertschinger, E. (1996). Cosmological dynamics, in Cosmology and Large Scale Structure, ed. Schaeffer, R., Silk, J., Spiro, M., et al., pp. 273–346. Amsterdam: Elsevier.Find this resource:

BICEP2 & Keck Array and Planck Collaborations, Ade, P. A. R., Ahmed, Z., et al. (2016). Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band, Physical Review Letters, 116, 031302.Find this resource:

BICEP2 and Keck Array Collaborations, Ade, P. A. R., Ahmed, Z., et al. (2015). BICEP2/Keck Array V: measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array, Astrophysical Journal, 811, 126.Find this resource:

BICEP2 Collaboration, Ade, P. A. R., Aikin, R. W., et al. (2014). Detection of B-Mode polarization at degree angular scales by BICEP2, Physical Review Letters, 112, 241101.Find this resource:

Birkinshaw, M., Gull, S. F., and Hardebeck, H. (1984). The Sunyaev–Zeldovich effect towards three clusters of galaxies, Nature, 309, 34–5.Find this resource:

Blackett, P. M. S. (1948). A possible contribution to the light of the night sky from the Cherenkov radiation emitted by cosmic rays, in The Emission Spectra of the Night Sky and Aurorae, Gassiot Committee Report, pp. 34–5. London: Physical Society of London.Find this resource:

Blain, A. W. and Longair, M. S. (1993). Sub-millimetre cosmology, Monthly Notices of the Royal Astronomical Society, 264, 509–21.Find this resource:

Blain, A. W. and Longair, M. S. (1996). Observing strategies for blank-field surveys in the sub-millimetre waveband, Monthly Notices of the Royal Astronomical Society, 279, 847–58.Find this resource:

Blanchard, A. and Schneider, J. (1987). Gravitational lensing effect on the fluctuations of the cosmic background radiation, Astronomy and Astrophysics, 184, 1–6.Find this resource:

Blandford, R. D. and Ostriker, J. P. (1978). Particle acceleration by astrophysical shocks, Astrophysical Journal, 221, L29–L32.Find this resource:

Bludman, S. A. and Ruderman, M. A. (1977). Induced cosmological constant expected above the phase transition restoring the broken symmetry, Physical Review Letters, 38, 255–7.Find this resource:

Blum, A. S., Lalli, R., and Renn, J. (2016). The renaissance of general relativity: how and why it happened, Annalen der Physik, 528, 344–9.Find this resource:

Blumenthal, G. R., Faber, S. M., Primack, J. R., et al. (1984). Formation of galaxies and large-scale structure with cold dark matter, Nature, 311, 517–25.Find this resource:

Boddy, K. K. and Carroll, S. M. (2013). Can the Higgs boson save us from the menace of the Boltzmann brains? arXiv preprint arXiv:1308.4686.Find this resource:

(p. 537) Boggess, N. W., Mather, J. C., Weiss, R., et al. (1992). The COBE mission – its design and performance two years after launch, Astrophysical Journal, 397, 420–9.Find this resource:

Bohlin, K. (1907). Versuch einer Bestimmung der Parallaxe des Andromedanebels, Astronomische Nachrichten, 176, cols 205–6.Find this resource:

Böhringer, H. (1994). Clusters of galaxies, in Frontiers of Space and Ground-based Astronomy, ed. Wamsteker, W., Longair, M. S., and Kondo, Y., pp. 359–68. Dordrecht: Kluwer Academic Publishers.Find this resource:

Bolte, M. (1997). Globular clusters: old, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 156–68. Singapore: World Scientific.Find this resource:

Bolton, C. T. (1972). Identifications of CYG X-1 with HDE 226868, Nature, 235, 271–3.Find this resource:

Bolton, J. G., Stanley, G. J., and Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation, Nature, 164, 101–2.Find this resource:

Boltzmann, L. (1895). On certain questions in the theory of gases, Nature, 51, 483–5.Find this resource:

Boltzmann, L. (1898). Vorlesungen über Gastheorie, part 2. Leipzig: Barth.Find this resource:

Bond, J. R. and Efstathiou, G. (1987). The statistics of cosmic background radiation fluctuations, Monthly Notices of the Royal Astronomical Society, 226, 655–87.Find this resource:

Bond, J. R. and Efstathiou, G. (1991). The formation of cosmic structure with a 17 keV neutrino, Physics Letters B, 265, 245–50.Find this resource:

Bond, J. R., Efstathiou, G., and Tegmark, M. (1997). Forecasting cosmic parameter errors from microwave background anisotropy experiments, Monthly Notices of the Royal Astronomical Society, 291, L33–L41.Find this resource:

Bondi, H. (1948). Review of cosmology, Monthly Notices of the Royal Astronomical Society, 108, 104–20.Find this resource:

Bondi, H. (1952). Cosmology. Cambridge: Cambridge University Press.Find this resource:

Bondi, H. (1960). Cosmology, second edition. Cambridge: Cambridge University Press.Find this resource:

Bondi, H. and Gold, T. (1948). The steady-state theory of the expanding universe, Monthly Notices of the Royal Astronomical Society, 108, 252–70.Find this resource:

Bondi, H., Bonnor, W. B., Lyttleton, R. A., et al. (1960). Rival Theories of Cosmology. London: Oxford University Press.Find this resource:

Bonnor, W. (1954). The stability of cosmological models, Zeitschrift für Astrophysik, 35, 10–20.Find this resource:

Bonnor, W. (1957). La formation des nébuleuses en cosmologie relativiste, Annales de l’Institut Henri Poincaré, 15, 158–72.Find this resource:

Bonolis, L. (2017). Stellar structure and compact objects before 1940: towards relativistic astrophysics, European Physical Journal H, 42, 311–93.Find this resource:

Bosma, A. (1981). 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, Astronomical Journal, 86, 1825–46.Find this resource:

Bostrom, N. (2002). Anthropic Bias: Observation Selection Effects in Science and Philosophy. New York: Routledge.Find this resource:

Bostrom, N. (2003). Are you living in a computer simulation?, Philosophical Quarterly, 53, 243–55.Find this resource:

Bothe, W. and Kolhörster, W. (1929). The nature of the high-altitude radiation, Zeitschrift für Physik, 56, 751–77.Find this resource:

Boughn, S. P. and Crittenden, R. (2004). A correlation between the cosmic microwave background and large-scale structure in the Universe, Nature, 427, 45–7.Find this resource:

Boughn, S. P., Fram, D. M., and Partridge, R. B. (1971). Isotropy of the microwave background at 8-mm wavelength, Astrophysical Journal, 165, 439–44.Find this resource:

(p. 538) Bouhmadi-López, M. and Madrid, J. A. J. (2005). Escaping the big rip?, Journal of Cosmology and Astroparticle Physics, 5, 005.Find this resource:

Bousso, R. and Freivogel, B. (2007). A paradox in the global description of the multiverse, Journal of High Energy Physics, 6, 018.Find this resource:

Bousso, R. and Polchinski, J. (2004). The string theory landscape, Scientific American, 291, 60–9.Find this resource:

Bousso, R. and Susskind, L. (2012). Multiverse interpretation of quantum mechanics, Physical Review D, 85, 045007.Find this resource:

Bousso, R., Hall, L. J., and Nomura, Y. (2009). Multiverse understanding of cosmological coincidences, Physical Review D, 80, 063510.Find this resource:

Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P., et al. (2006). Galaxies at z ∼ 6: the UV luminosity function and luminosity density from 506 HUDF, HUDF parallel ACS field, and GOODS i-dropouts, Astrophysical Journal, 653, 53–85.Find this resource:

Bowick, M. J., Smolin, L., and Wijewardhana, L. C. R. (1987). Does string theory solve the puzzles of black hole evaporation?, General Relativity and Gravitation, 19, 113–19.Find this resource:

Bowyer, S., Byram, E. T., Chubb, T. A., et al. (1964). Lunar occulation of X-ray emission from the Crab Nebula, Science, 146, 912–17.Find this resource:

Boyle, B. J., Shanks, T., Croom, S. M., et al. (2000). The 2dF QSO Redshift Survey – I. The optical luminosity function of quasi-stellar objects, Monthly Notices of the Royal Astronomical Society, 317, 1014–22.Find this resource:

Boynton, P. E., Stokes, R. A., and Wilkinson, D. T. (1968). Primeval fireball intensity at λ = 3.3 mm, Physical Review Letters, 21, 462–5.Find this resource:

Bracessi, A., Formiggini, L., and Gandolfi, E. (1970). Magnitudes, colours and coordinates of 175 ultraviolet excess objects in the field 13h, +36°, Astronomy and Astrophysics, 5, 264–79. Erratum: Astronomy and Astrophysics, 23, 159.Find this resource:

Bracewell, R. N. (Ed.) (1959). Paris Symposium on Radio Astronomy. Stanford: Stanford University Press.Find this resource:

Bracewell, R. N. and Conklin, E. K. (1968). An observer moving in the 3deg K radiation field, Nature, 219, 1343–4.Find this resource:

Braes, L. L. E. and Miley, G. K. (1971). Radio emission from Scorpius X-1 at 21.2 cm, Astronomy and Astrophysics, 14, 160–3.Find this resource:

Braginskii, V. B. and Gertsenshtein, M. E. (1967). Concerning the effective generation and observation of gravitational waves, ZhETF Pis’ma, 5, 348–50.Find this resource:

Branch, D. and Patchett, B. (1973). Type I supernovae, Monthly Notices of the Royal Astronomical Society, 161, 71–83.Find this resource:

Branch, D. and Tammann, G. A. (1992). Type I supernovae as standard candles, Annual Rreview of Astronomy and Astrophysics, 30, 359–89.Find this resource:

Brandt, W. N. and Hasinger, G. (2005). Deep extragalactic X-ray surveys, Annual Review of Astronomy and Astrophysics, 43, 827–59.Find this resource:

Brans, C. H. (2014). Jordan–Brans–Dicke theory. http://www.scholarpedia.org/article/Jordan-Brans-DickeTheory.Find this resource:

Brans, C. H. and Dicke, R. H. (1961). Mach’s principle and a relativistic theory of gravitation, Physical Review, 124, 925–35.Find this resource:

Braude, S., Dubinskii, B. A., Kaidanovskii, N. L., et al. (Eds.) (2012). A Brief History of Radio Astronomy in the USSR: A Collection of Scientific Essays (Vol. 382). Dordrecht: Springer.Find this resource:

Breitenberger, E. (1984). Gauss’ geodesy and the axiom of parallels, Archive for History of Exact Sciences, 31, 273–89.Find this resource:

Bridgman, P. W. (1955). Reflections of a Physicist. New York: Philosophical Library.Find this resource:

(p. 539) Bruggencate, P. T. (1930). The radial velocities of globular clusters, Proceedings of the National Academy of Sciences, 16, 111–18.Find this resource:

Brush, S. G. (1978). A geologist among astronomers: the rise and fall of the Chamberlin–Moulton cosmogony, Journal for the History of Astronomy, 9, 1–41, 77–104.Find this resource:

Brush, S. G. (1987). The nebular hypothesis and the evolutionary world view, History of Science, 25, 245–78.Find this resource:

Brush, S. G. (1996). Nebulous Earth: The Origin of the Solar System and the Core of the Earth. New York: Cambridge University Press.Find this resource:

Brush, S. G. (2001). Is the Earth too old? The impact of geochronology on cosmology, 1929–1952, in The Age of the Earth: From 4004 BC to AD 2002, ed. Lewis, C. L. and Knell, S. J., pp. 157–75. London: Geological Society.Find this resource:

Brustein, R., Gasperini, M., Giovannini, M., et al. (1995). Relic gravitational waves from string cosmology, Physics Letters B, 361, 45–51.Find this resource:

Bruzual, G. and Charlot, S. (2003). Stellar population synthesis at the resolution of 2003, Monthly Notices of the Royal Astronomical Society, 344, 1000–28.Find this resource:

Buchert, T. and Räsänen, S. (2012). Backreaction in late-time cosmology, Annual Review of Nuclear and Particle Science, 62, 57–79.Find this resource:

Buckley, J. H., Boyle, P., Burdett, A. et al. (1997). Multiwavelength observations of Markarian 421, AIP Conference Proceedings 410, Fourth Compton Symposium, C. D. Dermer, M. S. Strickman and J. D. Kurfess (Eds.), 1381–5. New York: AIP Publications.Find this resource:

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., et al. (1957). Synthesis of the elements in stars, Reviews of Modern Physics, 29, 547–650.Find this resource:

Burbidge, E. M., Burbidge, G. R. and Hoyle, F. (1963). Condensations in the intergalactic medium, Astrophysical Journal, 138, 873–88.Find this resource:

Burbidge, E. M., Burbidge, G. R., and Sandage, A. R. (1963). Evidence for the occurence of violent events in the nuclei of galaxies, Reviews of Modern Physics, 35, 947–72.Find this resource:

Burbidge, G. R. (1959). Estimates of the total energy in particles and magnetic field in the non-thermal radio sources, Astrophysical Journal, 129, 849–51.Find this resource:

Burbidge, G. R. (1967). On the wavelengths of the absorption lines in quasi-stellar objects, Astrophysical Journal, 147, 851–5.Find this resource:

Burbidge, G. R. and Burbidge, E. M. (1967). Quasi-Stellar Objects. New York: Freeman and Company.Find this resource:

Burbidge, G. R. and Hoyle, F. (1957). Matter and antimatter, Astronomical Journal, 62, 9.Find this resource:

Burgess, C. P., Cicoli, M., and Quevedo, F. (2013). String inflation after Planck 2013, Journal of Cosmology and Astroparticle Physics, 11, 003.Find this resource:

Burigana, C., Danese, L., and de Zotti, G. (1991). Constraints on the thermal history of the universe from the cosmic microwave background spectrum, Astrophysical Journal, 379, 1–5.Find this resource:

Butcher, H. and Oemler, Jr., A. (1978). The evolution of galaxies in clusters. I – ISIT photometry of C1 0024+1654 and 3C 295, Astrophysical Journal, 219, 18–30.Find this resource:

Butcher, H. and Oemler, A., Jr. (1984). The evolution of galaxies in clusters. V – A study of populations since Z ∼0.5, Astrophysical Journal, 285, 426–38.Find this resource:

Butterfield, J. (2014). On under-determination in cosmology, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46, 57–69.Find this resource:

Calcagni, G. (2017). String cosmology, in Classical and Quantum Cosmology, pp. 701–821. New York: Springer.Find this resource:

Caldeira, K. and Kasting, J. F. (1992). The life span of the biosphere revisited, Nature, 360, 721–3.Find this resource:

Caldwell, R. R. (2002). A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Physics Letters B, 545, 23–9.Find this resource:

(p. 540) Caldwell, R. R., Kamionkowski, M., and Weinberg, N. N. (2003). Phantom energy: dark energy with w < −1 causes a cosmic doomsday, Physical Review Letters, 91, 071301.Find this resource:

Callender, C. (2004). There is no puzzle about the low-entropy past, in Contemporary Debates in Philosophy of Science, ed. Hitchcock, C., pp. 240–56. Oxford: Blackwell Publishing.Find this resource:

Campbell, W. (1896). Review of Mr. Lowell’s book on Mars, Publications of the Astronomical Society of the Pacific, 8, 207–20.Find this resource:

Campbell, W. (1917). The nebulae: address of the retiring president of the American Association for the Advancement of Science, Science, 45, 513–48.Find this resource:

Carlip, A. (2007). Transient observers and variable constants, or repelling the invasion of the Boltzmann’s brains, Journal of Cosmology and Astroparticle Physics, 6, 001.Find this resource:

Carlstrom, J. E., Holder, G. P., and Reese, E. D. (2002). Cosmology with the Sunyaev–Zeldovich effect, Annual Review of Astronomuy and Astrophysics, 40, 643–80.Find this resource:

Carr, B. (Ed.) (2007). Universe or Multiverse? Cambridge: Cambridge University Press.Find this resource:

Carr, B. J. and Rees, M. J. (1979). The anthropic principle and the structure of the physical world, Nature, 278, 605–12.Find this resource:

Carroll, S. M. (2006). Is our universe natural?, Nature, 440, 1132–6.Find this resource:

Carroll, S. M. (2014). In what sense is the early universe fine-tuned? arXiv preprint arXiv:1406.3057.Find this resource:

Carroll, S. M., Press, W. H., and Turner, E. L. (1992). The cosmological constant, Annual Review of Astronomy and Astrophysics, 30, 499–542.Find this resource:

Carter, B. (1971). Axisymmetric black hole has only two degrees of freedom, Physical Review Letters, 26, 331–3.Find this resource:

Carter, B. (1974). Large number coincidences and the anthropic principle in cosmology, in Confrontation of Cosmological Theories with Observational Data: Proceedings of the Symposium, Krakow, Poland, September 10–12, 1973, ed. Longair, M. S., pp. 291–8. Dordrecht: D. Reidel Publishing Co.Find this resource:

Carter, B. (1983). The anthropic principle and its implications for biological evolution, Philosophical Transactions of the Royal Society of London A, 310, 347–63.Find this resource:

Carter, B. (1993). The anthropic selection principle and the ultra-Darwinian synthesis, in The Anthropic Principle: Proceedings of the Second Venice Conference on Cosmology and Philosophy, ed. Bertola, F. and Curi, U., pp. 33–66. Cambridge: Cambridge University Press.Find this resource:

Case, S. (2015). ‘Land-marks of the universe’: John Herschel against the background of positional astronomy, Annals of Science, 72, 417–34.Find this resource:

Cercignani, C. (1998). Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford: Oxford University Press.Find this resource:

Chaboyer, B. (1998). The age of the universe, Physics Reports, 307, 23–30.Find this resource:

Chae, K.-H., Biggs, A. D., Blandford, R. D., et al. (2002). Constraints on cosmological parameters from the analysis of the Cosmic Lens All Sky Survey radio-selected gravitational lens statistics, Physical Review Letters, 89, 151301.Find this resource:

Chaisson, E. J. (1997). The rise of information in an evolutionary universe, World Futures, 50, 447–55.Find this resource:

Chaisson, E. J. (2001). Cosmic Evolution: The Rise of Complexity in Nature. Cambridge, MA: Harvard University Press.Find this resource:

Chamberlin, T. C. (1899). Lord Kelvin’s address on the age of the Earth as an abode fitted for life, Science, 10, 11–18.Find this resource:

Chambers, R. (1844). Vestiges of the Natural History of Creation. London: John Churchill.Find this resource:

Chamcham, K., Silk, J., Barrow, J. D., et al. (Eds.) (2017). The Philosophy of Cosmology. Cambridge: Cambridge University Press.Find this resource:

(p. 541) Chandrasekhar, S. (1931). The maximum mass of ideal white dwarfs, Astrophysical Journal, 74, 81–2.Find this resource:

Chandrasekhar, S. and Henrich, L. R. (1942). An attempt to interpret the relative abundances of the elements and their isotopes, Astrophysical Journal, 95, 288–98.Find this resource:

Charlier, C. V. L. (1896). Ist die Welt endlich oder unendlich in Raum und Zeit?, Archiv für systematische Philosophie, 2, 477–94.Find this resource:

Charlier, C. V. L. (1908). Wie eine unendliche Welt aufgebaut kann, Arkiv för Matematik, Astronomi och Fysik, 4, 1–15.Find this resource:

Charlier, C. V. L. (1922). How an infinite world may be built up, Arkiv för Matematik, Astronomi och Fysik, 16, 1–34.Find this resource:

Charlier, C. V. L. (1925a). An infinite universe, Publications of the Astronomical Society of the Pacific, 37, 177–91.Find this resource:

Charlier, C. V. L. (1925b). On the structure of the universe, Publications of the Astronomical Society of the Pacific, 37, 53–76.Find this resource:

Charlier, C. V. L. (1925c). On the structure of the universe, Publications of the Astronomical Society of the Pacific, 37, 115–35.Find this resource:

Chavanis, P.-H. (2007). White dwarf stars in D dimensions, Physical Review D, 76, 023004.Find this resource:

Chown, M. (1993). Afterglow of Creation: From the Fireball to the Discovery of Cosmic Ripples. London: Arrow Books.Find this resource:

Christian, D. (2004). Maps of Time: An Introduction to Big History. Berkeley: University of California Press.Find this resource:

Christianson, G. E. (1995). Edwin Hubble: Mariner of the Nebulae. New York: Farrar, Straus and Giroux.Find this resource:

Chwolson, O. D. (1910). Dürfen wie die physikalische Gesetze auf das Universum anwenden?, Scientia, 8, 41–53.Find this resource:

Chwolson, O. D. (1924). Über eine mögliche Form fiktiver Doppelsterne, Astronomische Nachrichten, 221, 329.Find this resource:

Cimatti, A., Daddi, E., Renzini, A., et al. (2004). Old galaxies in the young Universe, Nature, 430, 184–7.Find this resource:

Ćirković, M. M. (2002). Laudatores temporis acti, or why cosmology is alive and well – a reply to Disney. General Relativity and Gravitation, 34, 119–29.Find this resource:

Ćirković, M. M. (2003a). Resource letter PEs-1: physical eschatology, American Journal of Physics, 71, 122–33.Find this resource:

Ćirković, M. M. (2003b). The thermodynamical arrow of time: reinterpreting the Boltzmann–Schuetz argument, Foundations of Physics, 33, 467–90.Find this resource:

Ćirković, M. M. (2012). The Astrobiological Landscape: Philosophical Foundations of the Study of Cosmic Life. Cambridge: Cambridge University Press.Find this resource:

Ćirković, M. M. (2016). Anthropic arguments outside of cosmology and string theory, Belgrade Philosophical Annual, 30, 91–114.Find this resource:

Clark, G. W., Garmire, G. P., and Kraushaar, W. L. (1968). Observation of High-Energy Cosmic Gamma Rays, Astrophysical Journal Letters, 153, L203–L207.Find this resource:

Clarkson, C. (2012). Establishing homogeneity of the universe in the shadow of dark energy, Comptes Rendus Physique, 13, 682–718.Find this resource:

Clausius, R. (1868). On the second fundamental theorem of the mechanical theory of heat, Philosophical Magazine, 35, 405–19.Find this resource:

Clerke, A. M. (1890). The System of the Stars. London: Longmans, Green & Co.Find this resource:

Clerke, A. M. (1903). Problems of Astrophysics. London: Adam and Charles Black.Find this resource:

(p. 542) CMS and LHCb Collaborations, Khachatryan, V., Sirunyan, A. M., et al. (2015). Observation of the rare Bs0μ+μ decay from the combined analysis of CMS and LHCb data, Nature, 522, 68–72.Find this resource:

Cockcroft, J. D. and Walton, E. T. S. (1932). Disintegration of lithium by swift protons, Nature, 129, 649.Find this resource:

Cocke, W. J., Disney, M. J., and Taylor, D. J. (1969). Discovery of optical signals from pulsar NP 0532, Nature, 221, 525–7.Find this resource:

Cole, S., Percival, W. J., Peacock, J. A., et al. (2005). The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications, Monthly Notices of the Royal Astronomical Society, 362, 505–34.Find this resource:

Coles, P. and Lucchin, F. (1995). Cosmology: the Origin and Evolution of Cosmic Structure. Chichester: John Wiley & Sons.Find this resource:

Coles, P. and Lucchin, F. (2002). Cosmology: the Origin and Evolution of Cosmic Structures, second edition. Chichester: John Wiley & Sons.Find this resource:

Coles, P., Melott, A. L., and Shandarin, S. F. (1993). Testing approximations for non-linear gravitational clustering, Monthly Notices of the Royal Astronomical Society, 260, 765–76.Find this resource:

Collins, C. B. and Hawking, S. W. (1973). Why is the universe isotropic?, Astrophysical Journal, 180, 317–34.Find this resource:

Colyvan, M., Garfield, J. L., and Priest, G. (2005). Problems with the argument from fine tuning, Synthese, 145, 325–38.Find this resource:

Conklin, E. K. (1969). Velocity of the Earth with respect to the cosmic background radiation, Nature, 222, 971–2.Find this resource:

Conklin, E. K. (1972). Anisotropy and inhomogeneity in the cosmic background radiation. PhD thesis, Stanford University.Find this resource:

Conklin, E. K. and Bracewell, R. N. (1967). Limits on small scale variations in the cosmic background radiation, Nature, 216, 777–9.Find this resource:

Connolly, A. J., Scranton, R., Johnston, D., et al. (2002). The angular correlation function of galaxies from early Sloan Digital Sky Survey data, Astrophysical Journal, 579, 42–7.Find this resource:

Cooke, R. J., Pettini, M., Jorgenson, R. A., et al. (2014). Precision measures of the primordial abundance of deuterium, Astrophysical Journal, 781, 31.Find this resource:

Corey, B. E. (1978). The dipole anisotropy of the cosmic microwave background at a wavelength of 1.6 cm. PhD thesis, Princeton University.Find this resource:

Corey, B. E. and Wilkinson, D. T. (1976). A measurement of the cosmic microwave background anisotropy at 19 GHz, Bulletin of the American Astronomical Society, 8, 351.Find this resource:

Costa, E., Frontera, F., Heise, J., et al. (1997). Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997, Nature, 387, 783–5.Find this resource:

Couchot, F., Henrot-Versillé, S., Perdereau, O., et al. (2017). Cosmological constraints on the neutrino mass including systematic uncertainties, Astronomy and Astrophysics, 606, A104.Find this resource:

Couderc, P. (1952). The Expansion of the Universe. London: Faber and Faber.Find this resource:

Cowan, J. J., Thielemann, F.-K., and Truran, J. W. (1991). Radioactive dating of the elements, Annual Reviews of Astronomy and Astrophysics, 29, 447–97.Find this resource:

Cowie, L. L., Barger, A. J., and Kneib, J.-P. (2002). Faint submillimeter counts from deep 850 micron observations of the lensing clusters A370, A851, and A2390, Astronomical Journal, 123, 2197–205.Find this resource:

Cowie, L. L., Lilly, S. J., Gardner, J., et al. (1988). A cosmologically significant population of galaxies dominated by very young star formation, Astrophysical Journal, 332, L29–L32.Find this resource:

(p. 543) Cowie, L. L., Songaila, A., Hu, E. M., et al. (1996). New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii Deep Fields, Astronomical Journal, 112, 839–64.Find this resource:

Crane, L. (2010). Possible implications of the quantum theory of gravity: an introduction to the meduso-anthropic principle, Foundations of Science, 15, 369–73.Find this resource:

Crane, P., Hegyi, D. J., Kutner, M. L., et al. (1989). Cosmic background radiation temperature at 2.64 millimeters, Astrophysical Journal, 346, 136–42.Find this resource:

Crane, P., Hegyi, D. J., Mandolesi, N., et al. (1986). Cosmic background radiation temperature from CN absorption, Astrophysical Journal, 309, 822–7.Find this resource:

Crawford, L. (2013). Freak observers and the simulation argument, Ratio, XXVI, 250–64.Find this resource:

Crelinsten, J. (2006). Einstein’s Jury: The Race to Test Relativity. Princeton: Princeton University Press.Find this resource:

Crittenden, R. G., Coulson, D., and Turok, N. G. (1995). Temperature–polarization correlations from tensor fluctuations, Physical Review D, 52, R5402–6.Find this resource:

Crookes, W. (1886). On the nature and origin of the so-called elements, in Report, British Association for the Advancement of Science, pp. 558–76.Find this resource:

Crowe, M. J. (1986). The Extraterrestrial Life Debate 1750–1900: The Idea of Plurality of Worlds from Kant to Lowell. Cambridge: Cambridge University Press.Find this resource:

Curtis, H, D. (1915). Proper motions of the nebulae, Publications of the Astronomical Society of the Pacific, 27, 214–18.Find this resource:

Curtis, H. D. (1917). New stars in spiral nebulae, Publications of the Astronomical Society of the Pacific, 29, 180–2.Find this resource:

Curtis, H. D. (1918). Descriptions of 762 nebulae and clusters photographed with the Crossley reflector, Publications of the Lick Observatory, 13, 11–42.Find this resource:

Curtis, H. D. (1933). The nebulae, in Handbuch der Astrophysik, Vol. 5.2, ed. Curtis, H. D. Berlin: Springer Verlag.Find this resource:

Dagkesamanskii, R. D. (2009). The Pushchino Radio Astronomy Observatory of the PN Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow, Physics-Uspekhi, 52, 1159.Find this resource:

Dahlen, A. (2010). Odds of observing the multiverse, Physical Review D, 81, 063501.Find this resource:

Dalgarno, A. (1983). Rydberg atoms in astrophysics, in Rydberg States of Atoms and Molecules, ed. Stebbings, R. F. and Dunning, F. B., pp. 1–30. Cambridge: Cambridge University Press.Find this resource:

Danese, L. and de Zotti, G. (1982). Double Compton process and the spectrum of the microwave background, Astronomy and Astrophysics, 107, 39–42.Find this resource:

Daniels, N. (1975). Lobatchewsky: some anticipations of later views on the relation between geometry and physics, Isis, 66, 75–85.Find this resource:

Darwin, G. H. (1905). Presidential address, in Report, British Association for the Advancement of Science, pp. 33–2.Find this resource:

Dashevsky, V. M. and Zeldovich, Y. B. (1964). Propagation of light in a nonhomogeneous non-flat universe II, Astronomicheskii Zhurnal, 41, 1071–4. Translation: (1965), Soviet Astronomy, 8, 854–6.Find this resource:

Davidson, W. (1962). The cosmological implications of the recent counts of radio sources, I. Analysis of the results and their immediate interpretation, Monthly Notices of the Royal Astronomical Society, 123, 425–35.Find this resource:

Davidson, W. and Davies, M. (1964). Interpretation of the counts of radio sources in terms of a 4-parameter family of evolutionary universes, Monthly Notices of the Royal Astronomical Society, 127, 241–55.Find this resource:

Davies, P. C. W. (1994). The Last Three Minutes. New York: Basic Books.Find this resource:

(p. 544) Davis, M. and Peebles, P. J. E. (1983). A survey of galaxy redshifts. V – The two-point position and velocity correlations, Astrophysical Journal, 267, 465–82.Find this resource:

Davis, M., Efstathiou, G., Frenk, C., et al. (1992). The end of cold dark matter?, Nature, 356, 489–94.Find this resource:

Davis, M., Geller, M. J., and Huchra, J. (1978). The local mean mass density of the universe – new methods for studying galaxy clustering, Astrophysical Journal, 221, 1–18.Find this resource:

Davis, T. M. and Lineweaver, C. H. (2004). Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe, Publications of the Astronomical Society of Australia, 21, 97–109.Find this resource:

De la Rue, W. (1861). Proceedings of the Chemical Society, Chemical News, 4, 130–3.Find this resource:

De Simone, A., Guth, A. H., Linde, A., et al. (2010). Boltzmann brains and the scale-factor cutoff measure of the multiverse, Physical Review D, 82, 063520.Find this resource:

De Sitter, W. (1916). On Einstein’s theory of gravitation, and its astronomical consequences. Second paper, Monthly Notices of the Royal Astronomical Society, 77, 155–84.Find this resource:

De Sitter, W. (1917a). On Einstein’s theory of gravitation, and its astronomical consequences. Third paper, Monthly Notices of the Royal Astronomical Society, 78, 3–28.Find this resource:

De Sitter, W. (1917b). On the curvature of space, Koninklijke Akademie van Wetenschappen, Proceedings, 20, 229–43.Find this resource:

De Sitter, W. (1920). On the possibility of statistical equilibrium of the universe, Koninklijke Akademie van Wetenschappen, 23, 866–8.Find this resource:

De Sitter, W. (1930). On the magnitudes, diameters and distances of the extragalactic nebulae, and their apparent radial velocities, Bulletin of the Astronomical Institute of the Netherlands, 5, 157–71.Find this resource:

De Sitter, W. (1933). The astronomical aspect of the theory of relativity, University of California Publications in Mathematics, 2, 142–96.Find this resource:

De Vaucouleurs, G. (1970). The case for a hierarchical cosmology, Science, 167, 1203–12.Find this resource:

De Vaucouleurs, G. (1971). The large-scale distribution of galaxies and clusters of galaxies, Publications of the Astronomical Society of the Pacific, 83, 113–43.Find this resource:

Dehnen, H. and Hönl, H. (1968). Informationen über das Universum aus antipodisch beobachteten Radioquellen, Naturwissenschaften, 55, 413–15.Find this resource:

Dekel, A. (1986). Biased galaxy formation, Comments on Astrophysics, 11, 235–56.Find this resource:

Dekel, A. and Rees, M. J. (1987). Physical mechanisms for biased galaxy formation, Nature, 326, 455–62.Find this resource:

Dekel, A., Burstein, D., and White, S. D. M. (1997). Measuring Ω, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 175–92. Singapore: World Scientific.Find this resource:

Dennett, D. (1995). Darwin’s Dangerous Idea: Evolution and the Meanings of Life. New York: Simon and Schuster.Find this resource:

DeVorkin, D. (1998). The American astronomical community, Journal for the History of Astronomy, 29, 389–92.Find this resource:

Dewhirst, D. and Hoskin, M. A. (1991). The Rosse spirals, Journal for the History of Astronomy, 22, 257–66.Find this resource:

Dicke, R. H. (1961). Dirac’s cosmology and Mach’s principle, Nature, 192, 440–1.Find this resource:

Dicke, R. H. and Peebles, P. J. E. (1979). Big bang cosmology – enigmas and nostrums, in General Relativity: An Einstein Centenary Survey, ed. Hawking, S. W. and Israel, W., pp. 504–17. Cambridge: Cambridge University Press.Find this resource:

Dicke, R. H., Beringer, R., Kyhl, R. L., et al. (1946). Atmospheric absorption measurements with a microwave radiometer, Physical Review, 70, 340–8.Find this resource:

Dicke, R. H., Peebles, P. J. E., Roll, P. G., et al. (1965). Cosmic black-body radiation, Astrophysical Journal, 142, 414–19.Find this resource:

(p. 545) Dickey, J. O., Bender, P. L., Faller, J. E., et al. (1994). Lunar laser ranging: a continuing legacy of the Apollo program, Science, 265, 482–90.Find this resource:

Dingle, H. (1937). Modern Aristotelianism, Nature, 139, 784–6.Find this resource:

Dirac, P. A. M. (1937). The cosmological constants, Nature, 139, 323.Find this resource:

Dirac, P. A. M. (1938). A new basis for cosmology, Proceedings of the Royal Society A, 165, 199–208.Find this resource:

Dirac, P. A. M. (1974). Cosmological models and the large numbers hypothesis, Proceedings of the Royal Society A, 338, 439–46.Find this resource:

Disney, M. J. (2000). The case against cosmology, General Relativity and Gravitation, 32, 1125–34.Find this resource:

Disney, M. J. (2007). Modern cosmology: science or folktale?, American Scientist, 95, 383–5.Find this resource:

Dodelson, S. (2003). Modern Cosmology. Amsterdam: Academic Press.Find this resource:

Dodelson, S., Gates, E. I., and Turner, M. S. (1996). Cold dark matter, Science, 274, 69–75.Find this resource:

Doroshkevich, A. G. and Novikov, I. D. (1964). Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology, Dokladi Akademiya Nauk SSSR, 154, 809–11. Translation: (1964), Soviet Physics Doklady, 9, 111–13.Find this resource:

Doroshkevich, A. G., Sunyaev, R. A., and Zeldovich, Y. B. (1974). The formation of galaxies in Friedmanian universes, in Confrontation of Cosmological Theories with Observational Data, IAU Symposium No.63, ed. Longair, M. S., pp. 213–25. Dordrecht: D. Reidel Publishing Company.Find this resource:

Doroshkevich, A. G., Zeldovich, Y. B., Sunyaev, R. A., et al. (1980a). Astrophysical implications of the neutrino rest mass. Part II. The density-perturbation spectrum and small-scale fluctuations in the microwave background, Pis’ma v Astronomicheskii Zhurnal, 6, 457–64.Find this resource:

Doroshkevich, A. G., Zeldovich, Y. B., Sunyaev, R. A., et al. (1980b). Astrophysical implications of the neutrino rest mass. Part III. The non-linear growth of perturbations and hidden mass, Pis’ma v Astronomicheskii Zhurnal, 6, 465–9.Find this resource:

Douglas, A. V. (1956). The Life of Arthur Stanley Eddington. London: Thomas Nelson and Sons Ltd.Find this resource:

Draper, K., Draper, P., and Pust, J. (2007). Probabilistic arguments for multiple universes, Pacific Philosophical Quarterly, 88, 288–307.Find this resource:

Dressler, A. (1980). Galaxy morphology in rich clusters – implications for the formation and evolution of galaxies, Astrophysical Journal, 236, 351–65.Find this resource:

Dressler, A. (1984). The evolution of galaxies in clusters, Annual Review of Astronomy and Astrophysics, 22, 185–222.Find this resource:

Dreyer, J. L. E. (1895). Index catalogue of nebulae in the years 1888 to 1894, with notes and corrections to the new general catalogue, Memoirs of the Royal Astronomical Society, 51, 185–228.Find this resource:

Drieschner, M. (Ed.) (2014). Carl Friedrich von Weizsäcker: Major Texts in Physics. Heidelberg: Springer.Find this resource:

Duerbeck, H. W. and Seitter, W. (2005). The nebular research of Carl Wirtz, in The Multinational History of Strasbourg Astronomical Observatory, ed. Heck, A., pp. 167–87. Dordrecht: Springer.Find this resource:

Duerbeck, H. W. (2002). Extragalactic research in Europe and the United States in the early 20th century, Astronomische Nachrichten, 323, cols 534–7.Find this resource:

Duhem, P. (1974). The Aim and Structure of Physical Theory. New York: Atheneum.Find this resource:

Dunlop, J. S. (2011). The cosmic history of star formation, Science, 333, 178.Find this resource:

Dunlop, J. S. (2013). Observing the first galaxies, in The First Galaxies, ed. Wiklind, T., Mobasher, B., and Bromm, V., pp. 223–92. Berlin: Springer.Find this resource:

Dunlop, J. S. and Peacock, J. A. (1990). The redshift cut-off in the luminosity function of radio galaxies and quasars, Monthly Notices of the Royal Astronomical Society, 247, 19–42.Find this resource:

Durrer, R. (2008). The Cosmic Microwave Background. Cambridge University Press, Cambridge.Find this resource:

Dyer, C. C. and Roeder, R. C. (1972). The distance-redshift relation for universes with no intergalactic medium, Astrophysical Journal, 174, L115–17.Find this resource:

(p. 546) Dyson, F. J. (1979). Time without end: physics and biology in an open universe, Reviews of Modern Physics, 51, 447–60.Find this resource:

Dyson, F. W., Eddington, A. S., and Davidson, C. (1920). A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919, Philosophical Transactions of the Royal Society, 220, 291–333.Find this resource:

Dyson, L., Kleban, M., and Susskind, L. (2002). Disturbing implications of a cosmological constant, Journal of High Energy Physics, 10, 011.Find this resource:

Earman, J. (1987). The SAP also rises: a critical examination of the anthropic principle, American Philosophical Quarterly, 24, 307–17.Find this resource:

Earman, J. (1999). The Penrose–Hawking singularity theorems: history and implications, in The Expanding Worlds of General Relativity. Einstein Studies Vol. 7, ed. Goenner, H. et al., pp. 235–70. Boston: Birkhäuser.Find this resource:

Earman, J. (2001). Lambda: the constant that refuses to die, Archive for History of Exact Sciences, 55, 189–220.Find this resource:

Earman, J. (2009). Cosmology: a special case? Unpublished manuscript.Find this resource:

Earman, J. and Eisenstaedt, J. (1999). Einstein and singularities, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 30, 185–235.Find this resource:

Eastman, R. G. and Kirshner, R. P. (1989). Model atmospheres for SN 1987A and the distance to the Large Magellanic Cloud, Astrophysical Journal, 347, 771–93.Find this resource:

Eddington, A. S. (1914). Stellar Movements and the Structure of the Universe. Cambridge: Cambridge University Press.Find this resource:

Eddington, A. S. (1916). The kinetic energy of a star cluster, Monthly Notices of the Royal Astronomical Society, 76, 525–8.Find this resource:

Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation. London: Fleetway Press.Find this resource:

Eddington, A. S. (1920a). Space, Time and Gravitation. An Outline of the General Relativity Theory. Cambridge: Cambridge University Press.Find this resource:

Eddington, A. S. (1920b). The internal constitution of the stars, Observatory, 43, 341–58.Find this resource:

Eddington, A. S. (1923). The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.Find this resource:

Eddington, A. S. (1926a). The Internal Constitution of the Stars. Cambridge: Cambridge University Press. Reprinted 1988.Find this resource:

Eddington, A. S. (1926b). The source of stellar energy, Nature, 117, 25–32.Find this resource:

Eddington, A. S. (1930). On the instability of Einstein’s spherical world, Monthly Notices of the Royal Astronomical Society, 90, 668–78.Find this resource:

Eddington, A. S. (1931). The end of the world from the standpoint of mathematical physics, Nature, 127, 447–53.Find this resource:

Eddington, A. S. (1933). The Expanding Universe. Cambridge: Cambridge University Press.Find this resource:

Edge, D. O., Shakeshaft, J. R., McAdam, W. B., et al. (1959). A survey of radio sources at a frequency of 159 Mc/s, Memoirs of the Royal Astronomical Society, 68, 37–60.Find this resource:

Efstathiou, G. (1990). Cosmological perturbations, in Physics of the Early Universe, ed. Peacock, J. A., Heavens, A. F., and Davies, A. T., pp. 361–463. Edinburgh: SUSSP Publications.Find this resource:

Efstathiou, G. (1995). High-redshift galaxies: problems and prospects, in Galaxies in the Young Universe, ed. Hippelein, H., Meissenheimer, K., and Röser, H. J., pp. 299–314. Berlin: Springer-Verlag.Find this resource:

Efstathiou, G. and Rees, M. J. (1988). High-redshift quasars in the cold dark matter cosmogony, Monthly Notices of the Royal Astronomical Society, 230, 5P–11P.Find this resource:

Efstathiou, G., Frenk, C. S., White, S. D. M., et al. (1988). Gravitational clustering from scale-free initial conditions, Monthly Notices of the Royal Astronomical Society, 235, 715–48.Find this resource:

(p. 547) Eguchi, K., Enomoto, S., and 97 authors (2003). First results from Kamland: evidence for reactor anti-neutrino disappearance, Physical Review Letters, 90, 021802.Find this resource:

Ehlers, J. (1988). Hermann Weyl’s contributions to the general theory of relativity, in Exact Sciences and their Philosophical Foundations, ed. Deppert, W. et al., pp. 83–105. Frankfurt am Main: Verlag Peter Lang.Find this resource:

Ehlers, J., Geren, P., and Sachs, R. K. (1968). Isotropic solutions of the Einstein–Liouville equations, Journal of Mathematical Physics, 9, 1344–9.Find this resource:

Einstein, A. (1915). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitäts theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 831–39. Berlin.Find this resource:

Einstein, A. (1916a). Die Grundlage der Allgemeinen Relativitätstheorie (The Foundation of the General Theory of Relativity). Leipzig: J. A. Barth. English translation: In The Collected Papers of Albert Einstein, Vol. 6. The Berlin Years: Writings, 1914–1917 (English translation supplement), ed. Kox, A. J. et al., pp. 146–200. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1916b). Ernst Mach, in The Collected Papers of Albert Einstein, Vol. 6. The Berlin Years: Writings, 1914–1917 (English translation supplement), ed. Kox, A. J. et al., pp. 141–5. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1916c). Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 688–96.Find this resource:

Einstein, A. (1917a). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie (Cosmological considerations in the general theory of relativity), Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften (Berlin), 1, 142–52. English translation: In The Collected Papers of Albert Einstein, Vol. 6. The Berlin Years: Writings, 1914–1917 (English translation supplement), ed. Kox, A. J. et al., pp. 421–32. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1917b). Über die spezielle und die allgemeine Relativitätstheorie, gemeinverständlich (On the Special and General Theory of Relativity: A Popular Account)). Braunschweig: Vieweg.Find this resource:

Einstein, A. (1918a). Critical comment on a solution of the gravitational field equations given by Mr. de Sitter, in The Collected Papers of Albert Einstein, Vol. 7. The Berlin Years: Writings, 1918–1921 (English translation supplement), ed. Janssen, M. et al., pp. 36–8. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1918b). On the foundations of the general theory of relativity, in The Collected Papers of Albert Einstein, Vol. 7. The Berlin Years: Writings, 1918–1921 (English translation supplement), ed. Janssen, M. et al., pp. 33–5. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1919). Do gravitational fields play an essential role in the structure of elementary particles of matter?, in The Collected Papers of Albert Einstein, Vol. 7. The Berlin Years: Writings, 1918–1921 (English translation supplement), ed. Janssen, M. et al., pp. 80–8. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1922). Bemerkung zu der Arbeit von A. Friedman “Ueber die Kruemmung des Raumes” (Remark on the work of A. Friedman “On the curvature of space”), Zeitschrift für Physik, 11, 326. English translation: (1986) in Cosmological Constants: Papers in Modern Cosmology, ed. Bernstein, J. and Feinberg, G., p. 66. New York: Columbia University Press.Find this resource:

Einstein, A. (1936). Lens-like action of a star by the deviation of light in the gravitational field, Science, 84, 506–7.Find this resource:

Einstein, A. (1945). The Meaning of Relativity. Princeton: Princeton University Press.Find this resource:

Einstein, A. (1956). The Meaning of Relativity, revised edition. Princeton: Princeton University Press.Find this resource:

(p. 548) Einstein, A. and Straus, E. G. (1945). The influence of the expansion of space on the gravitation fields surrounding the individual stars, Reviews of Modern Physics, 17, 120.Find this resource:

Eisenstaedt, J. (1989). Cosmology: a space for thought on general relativity, in Foundations of Big Bang Cosmology, ed. Meyerstein, W., pp. 271–95. Singapore: World Scientific.Find this resource:

Eisenstaedt, J. (1994). Lemaître and the Schwarzschild solution, in The Attraction of Gravitation: New Studies in the History of General Relativity, ed. Earman, J., Janssen, M., and Norton, J., pp. 353–89. Boston: Birkhäuser.Find this resource:

Eisenstein, D. J. and Hu, W. (1998). Baryonic features in the matter transfer function, Astrophysical Journal, 496, 605–14.Find this resource:

Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. (2005). Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophysical Journal, 633, 560–74.Find this resource:

Elder, F. R., Gurewitsch, A. M., Langmuir, R. V., et al. (1947). Radiation from electrons in a synchrotron, Physical Review, 71, 829–30.Find this resource:

Ellis, G. F. R. (1971a). Relativistic cosmology, in General Relativity and Cosmology: Proceedings of the International School of Physics “Enrico Fermi”, ed. Sachs, R. K., pp. 104–82. New York: Academic Press.Find this resource:

Ellis, G. F. R. (1971b). Topology and cosmology, General Relativity and Gravitation, 2, 7–21.Find this resource:

Ellis, G. F. R. (1980). Limits to verification in cosmology, Annals of the New York Academy of Sciences, 336, 130–60.Find this resource:

Ellis, G. F. R. (1984a). Alternatives to the big bang, Annual Review of Astronomy and Astrophysics, 22, 157–84.Find this resource:

Ellis, G. F. R. (1984b). Relativistic cosmology: its nature, aims and problems, in General Relativity and Gravitation, ed. Bertotti, B., de Felice, F., and Pascolini, A., pp. 215–88. Dordrecht: D. Reidel Publishing Co.Find this resource:

Ellis, G. F. R. (1989). The expanding universe: a history of cosmology from 1917 to 1960, in Einstein and the History of General Relativity, ed. Howard, D. and Stachel, J., pp. 367–401. Boston: Birkäuser.Find this resource:

Ellis, G. F. R. (1990). Innovation, resistance and change. The transition to the expanding universe, in Modern Cosmology in Retrospect, ed. Bertotti, B. et al., pp. 97–113. Cambridge: Cambridge University Press.Find this resource:

Ellis, G. F. R. (2003). The unique nature of cosmology, in Revisiting the Foundations of Relativistic Physics: Festschrift in Honor of John Stachel, ed. Renn, J., Divarci, L., and Schröter, P. et al., pp. 193–220. Berlin: Springer Verlag.Find this resource:

Ellis, G. F. R. (2007). Issues in the philosophy of cosmology, in Handbook for the Philosophy of Physics: Part B, ed. Earman, J. and Butterfield, J., pp. 1183–286. Dordrecht: Elsevier.Find this resource:

Ellis, G. F. R. (2011a). Does the multiverse really exist?, Scientific American, 305(2), 38–43.Find this resource:

Ellis, G. F. R. (2011b). Editorial note to: Brandon Carter, large number coincidences and the anthropic principle in cosmology, General Relativity and Gravitation, 43, 3213–23.Find this resource:

Ellis, G. F. R. (2014). On the philosophy of cosmology, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46, 5–23.Find this resource:

Ellis, G. F. R. and Brundrit, G. B. (1979). Life in the infinite universe, Quarterly Journal of the Royal Astronomical Society, 20, 37–41.Find this resource:

Ellis, G. F. R. and Madsen, M. S. (1991). Exact scalar field cosmologies, Classical and Quantum Gravity, 8, 667–76.Find this resource:

Ellis, G. F. R. and Penrose, R. (2010). Dennis William Sciama, Biographical Memoirs of Fellows of the Royal Society, 56, 401–22.Find this resource:

(p. 549) Ellis, G. F. R. and Rothman, T. (1993). Lost horizons, American Journal of Physics, 61, 883–93.Find this resource:

Ellis, G. F. R. and Sciama, D. W. (1972). Global and non-global problems in cosmology, in General Relativity: Papers in Honour of J. L. Synge, ed. O’Raifeartaigh, L., pp. 35–59. Oxford: Clarendon Press.Find this resource:

Ellis, G. F. R. and Silk, J. (2014). Scientific method: defend the integrity of physics, Nature, 516, 321–3.Find this resource:

Ellis, G. F. R. and Smeenk, C. (2017). Philosophy of cosmology, in The Stanford Encyclopedia of Philosophy, ed. Zalta, E. N. Stanford: Metaphysics Research Lab, Stanford University.Find this resource:

Ellis, G. F. R. and Stoeger, W. (1987). The ‘fitting problem’ in cosmology, Classical and Quantum Gravity, 4, 1697.Find this resource:

Ellis, G. F. R., Kirchner, U., and Stoeger, W. R. (2004). Multiverses and physical cosmology, Monthly Notices of the Royal Astronomical Society, 347, 921–36.Find this resource:

Ellis, G. F. R., Nel, S. D., Maartens, R., et al. (1985). Ideal observational cosmology, Physics Reports, 124, 315–417.Find this resource:

Epstein, E. E. (1967). On the small-scale distribution at 3.4-mm wavelength of the reported 3° K background radiation, Astrophysical Journal Letters, 148, L157.Find this resource:

Fabbri, R., Guidi, I., Melchiorri, F., et al. (1980). Measurement of the cosmic-background large-scale anisotropy in the millimetric region, Physical Review Letters, 44, 1563–6.Find this resource:

Faber, S. M. and Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophysical Journal, 204, 668–83.Find this resource:

Fabian, A. C., Vaughan, S., Nandra, K., et al. (2002). A long hard look at MCG-6-30-15 with XMM-Newton, Monthly Notices of the Royal Astronomical Society, 335, L1–L5.Find this resource:

Fabricant, D. G., Lecar, M., and Gorenstein, P. (1980). X-ray measurements of the mass of M87, Astrophysical Journal, 241, 552–60.Find this resource:

Falb, R. (1875). Die Welten Bildung und Untergang, Sirius, 8, 193–202.Find this resource:

Fan, X., Hennawi, J. F., Richards, G. T., et al. (2004). A survey of z ≥5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars, Astronomical Journal, 128, 515–22.Find this resource:

Fan, X., Narayanan, V. K., Lupton, R. H., et al. (2001). A survey of z ≥5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ∼6, Astronomical Journal, 122, 2833–49.Find this resource:

Fara, P. (2004). Pandora’s Breeches: Women, Science and Power in the Enlightenment. London: Random House.Find this resource:

Faraoni, V. (2004). Cosmology in Scalar-Tensor Gravity. Dordrecht: Kluwer Academic.Find this resource:

Farhi, E., Guth, A. H., and Guven, J. (1990). Is it possible to create a universe in the laboratory by quantum tunneling?, Nuclear Physics B, 339, 417–90.Find this resource:

Fath, E. A. (1909). The spectra of some spiral nebulae and globular star clusters, Lick Observatory Bulletin, 149, 71–7.Find this resource:

Feast, M. W. and Catchpole, R. M. (1997). The Cepheid period–luminosity zero-point from HIPPARCOS trigonometrical parallaxes, Monthly Notices of the Royal Astronomical Society, 286, L1–L5.Find this resource:

Fermi, E. (1949). On the origin of the cosmic radiation, Physical Review, 75, 1169–74.Find this resource:

Fichtel, C. E., Simpson, G. A., and Thompson, D. J. (1978). Diffuse gamma radiation, Astrophysical Journal, 222, 833–49.Find this resource:

Field, G. B. and Hitchcock, J. L. (1966). The radiation temperature of space at λ = 2.6 mm and the excitation of interstellar CN, Astrophysical Journal, 146, 1–6.Find this resource:

(p. 550) Field, G. B., Arp, H., and Bahcall, J. N. (1974). The Redshift Controversy. Papers from a Symposium, Washington, DC, December 1972. Reading, MA: W. A. Benjamin (Addison-Wesley).Find this resource:

Finlay-Freundlich, E. (1954). Red shifts in the spectra of celestial bodies, Philosophical Magazine, 45, 303–19.Find this resource:

Fitch, W. S., Pacholczyk, A. G., and Weymann, R. J. (1967). Light variations of the Seyfert galaxy NGC 4151, Astrophysical Journal, 150, L67–L70.Find this resource:

Fixsen, D. J. (2009). The temperature of the cosmic microwave background, Astrophysical Journal, 707, 916–20.Find this resource:

Fixsen, D. J., Cheng, E. S., Gales, J. M., et al. (1996). The cosmic microwave background spectrum from the full COBE FIRAS data set, Astrophysical Journal, 473, 576–87.Find this resource:

Fixsen, D. J., Kogut, A., Levin, S., et al. (2011). ARCADE 2 measurement of the absolute sky brightness at 3–90 GHz, Astrophysical Journal, 734, 5.Find this resource:

Flauger, R., Hill, J. C., and Spergel, D. N. (2014). Toward an understanding of foreground emission in the BICEP2 region, Journal of Cosmology and Astroparticle Physics, 8, 039.Find this resource:

Flin, P. and Duerbeck, H. (2006). Silberstein, general relativity and cosmology, in Albert Einstein Century International Conference, ed. Alimi, J.-M. and Füzfa, A., pp. 1087–94. American Institute of Physics Conference Proceedings, Vol. 861.Find this resource:

Fomalont, E. B., Kellermann, K. I., Anderson, M. C., et al. (1988). New limits to fluctuations in the cosmic background radiation at 4.86 GHz between 12 and 60 arcsecond resolution, Astronomical Journal, 96, 1187–91.Find this resource:

Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. (1994). Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L27–L30.Find this resource:

Forgan, D., Dayal, P., Cockell, C., et al. (2017). Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation, International Journal of Astrobiology, 16, 60–73.Find this resource:

Forman, W., Jones, C., Cominsky, L., et al. (1978). The fourth UHURU catalog of X-ray sources, Astrophysical Journal Supplement Series, 38, 357–412.Find this resource:

Fowler, R. H. (1926). On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114–22.Find this resource:

Fowler, W. A. (1972). New observations and old nucleocosmochronologies, in Cosmology, Fusion and Other Matters, ed. Reines, F., p. 67. London: Hilger.Find this resource:

Francis, P. J., Hewett, P. C., Foltz, C. B., et al. (1991). A high signal-to-noise ratio composite quasar spectrum, Astrophysical Journal, 373, 465–70.Find this resource:

Frank, J., King A. and Raine, D. (2002). Accretion Power in Astrophysics, third edition. Cambridge: Cambridge University Press.Find this resource:

Frautschi, S. (1982). Entropy in an expanding universe, Science, 217, 593–9.Find this resource:

Freedman, W. L. (2017). Correction: cosmology at a crossroads, Nature Astronomy, 1, 0169.Find this resource:

Freedman, W. L., Madore, B. F., Gibson, B. K., et al. (2001). Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophysical Journal, 533, 47–72.Find this resource:

Frenk, C. (1986). Galaxy clustering and the dark-matter problem, Philosophical Transactions of the Royal Society, A330, 517–41.Find this resource:

Friedman, A. (1922). Über die Krümmung des Raumes (On the curvature of space), Zeitschrift für Physik, 10, 377–86. English translation: (1986), in Cosmological Constants: Papers in Modern Cosmology, ed. Bernstein, J. and Feinberg, G., pp. 49–58. New York: Columbia University Press.Find this resource:

Friedman, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes (On the possibility of a world with constant negative curvature), Zeitschrift für Physik, 12, 326–32. English translation: (1986), in Cosmological Constants: Papers in Modern Cosmology, ed. Bernstein, J. and Feinberg, G., pp. 59–65. New York: Columbia University Press.Find this resource:

(p. 551) Friedman, H. (1986). Sun and Earth. New York: Scientific American Library.Find this resource:

Friedman, H., Lichtman, S. W., and Byram, E. T. (1951). Photon counter measurements of solar X-rays and extreme ultraviolet light, Physical Review, 83, 1025–30.Find this resource:

Frieman, J., Turner, M., and Huterer, D. (2008). Dark energy and the accelerating universe. arXiv preprint arXiv:0803.0982.Find this resource:

Fritz, G., Henry, R. C., Meekins, J. F., et al. (1969). X-ray pulsar in the Crab Nebula, Science, 164, 709–12.Find this resource:

Fukugita, M., Futamase, T., Kasai, M., et al. (1992). Statistical properties of gravitational lenses with a nonzero cosmological constant, Astrophysical Journal, 393, 3–21.Find this resource:

Galbraith, W. and Jelley, J. V. (1953). Light pulses from the night sky associated with cosmic rays, Nature, 171, 349–50.Find this resource:

Galbraith, W. and Jelley, J. V. (1955). Light-pulses from the night sky and Cherenkov radiation, Part 1, Journal of Atmospheric and Terrestrial Physics, 6, 250–62.Find this resource:

Gale, G. (2017). Cosmology: methodological debates in the 1930s and 1940s, in The Stanford Encyclopedia of Philosophy, ed. Zalta, E. N. Stanford: Metaphysics Research Lab, Stanford University.Find this resource:

Gamow, G. (1937). Atomic Nuclei and Nuclear Transformations. Oxford: Oxford University Press.Find this resource:

Gamow, G. (1939). Physical possibilities of stellar evolution, Physical Review, 55, 718–25.Find this resource:

Gamow, G. (1940). The Birth and Death of the Sun. New York: Viking Press.Find this resource:

Gamow, G. (1946). Expanding universe and the origin of the elements, Physical Review, 70, 572–3.Find this resource:

Gamow, G. (1949). On relativistic cosmogony, Reviews of Modern Physics, 21, 367–73.Find this resource:

Gamow, G. (1954). Modern cosmology, Scientific American, 190, 55–63.Find this resource:

Gamow, G. (1956). The evolutionary universe, Scientific American, 195, 136–56.Find this resource:

Gamow, G. (1967). Does gravity change with time?, Proceedings of the National Academy of Sciences, 57, 187–93.Find this resource:

Gamow, G. (1970). My World Line. New York: Viking Press.Find this resource:

Gamow, G. and Fleming, J. A. (1942). Report on the eighth annual Washington conference of theoretical physics, Science, 95, 579–81.Find this resource:

Garbell, M. A. (1963). Theses of the First Soviet Gravitation Conference held in Moscow in the summer of 1961. San Francisco: Garbell Research Foundation.Find this resource:

Gardiner, J. (2014). The Law of Chaos: The Multiverse of Michael Moorcock. New York: Headpress.Find this resource:

Gardner, A. and Conlon, J. P. (2013). Cosmological natural selection and the purpose of the universe, Complexity, 18, 48–56.Find this resource:

Garnavich, P. M., Kirshner, R. P., Challis, P., et al. (1998). Constraints on cosmological models from Hubble Space Telescope observations of high-z supernovae, Astrophysical Journal Letters, 493, L53–8.Find this resource:

Garriga, J., Mukhanov, V. F., Olum, K. D., et al. (2000). Eternal inflation, black holes, and the future of civilizations, International Journal of Theoretical Physics, 39, 1887–900.Find this resource:

Gasperini, M. and Maharana, J. (Eds.) (2007). String Theory and Fundamental Interactions: Gabriele Veneziano and Theoretical Physics: Historical and Contemporary Perspectives. Berlin: Springer-Verlag.Find this resource:

Gasperini, M. and Veneziano, G. (1993). Pre-big-bang in string cosmology, Astroparticle Physics, 1, 317–39.Find this resource:

Gasperini, M. and Veneziano, G. (2003). The pre-big bang scenario in string cosmology, Physics Reports, 373, 1–212.Find this resource:

Gasperini, M. and Veneziano, G. (2015). String theory and pre-big bang cosmology, Il Nuovo Cimento, 38, 160.Find this resource:

(p. 552) Gasperini, M., Giovannini, M., and Veneziano, G. (1995). Primordial magnetic fields from string cosmology, Physical Review Letters, 75, 3796–9.Find this resource:

Gerig, A. (2014). Are there many worlds? arXiv preprint arXiv:1406.7215.Find this resource:

Gerig, A., Olum, K. D., and Vilenkin, A. (2013). Universal doomsday: analyzing our prospects for survival, Journal of Cosmology and Astroparticle Physics, 5, 013.Find this resource:

Geroch, R. (1977). Prediction in general relativity, in Foundation of Space-Time Theories, ed. Earman, J. S., Glymour, C. N., and Stachel, J. J., pp. 81–93. Minneapolis: University of Minnesota Press.Find this resource:

Gershtein, S. S. and Zeldovich, Y. B. (1966). Rest mass of a muonic neutrino and cosmology, Pisma v Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 4, 174–7. Translation: Soviet Journal of Experimental and Theoretical Physics Letters, 1966, 4, pp. 120–2.Find this resource:

Gertsenshtein, M. E. (1962). Wave resonance of light and gravitional waves, Soviet Physics JETP, 14, 84–5.Find this resource:

Gertsenshtein, M. E. and Pustovoit, V. I. (1963). On the detection of low frequency gravitational waves, Journal of Experimental and Theoretical Physics, 16, 433–5.Find this resource:

Ghez, A. M., Morris, M., Becklin, E. E., et al. (2000). The accelerations of stars orbiting the Milky Way’s central black hole, Nature, 407, 349–51.Find this resource:

Giacconi, R., Bechtold, J., Branduardi, G., et al. (1979). A high-sensitivity X-ray survey using the Einstein Observatory and the discrete source contribution to the extragalactic X-ray background, Astrophysical Journal Letters, 234, L1–L7.Find this resource:

Giacconi, R., Gursky, H., Kellogg, E., et al. (1971a). Discovery of periodic X-ray pulsations in Centaurus X-3 from UHURU, Astrophysical Journal, 167, L67–L73.Find this resource:

Giacconi, R., Gursky, H., Paolini, F. R., et al. (1962). Evidence for X-rays from sources outside the Solar System, Physical Review Letters, 9, 439–43.Find this resource:

Giacconi, R., Gursky, H., and van Speybroeck, L. P. (1968). Observational techniques in X-ray astronomy, Annual Review of Astronomy and Astrophysics, 6, 373–416.Find this resource:

Giacconi, R., Kellogg, E., Gorenstein, P., et al. (1971b). An X-ray scan of the galactic plane from UHURU, Astrophysical Journal, 165, L27–L35.Find this resource:

Gibbons, G. W. and Hawking, S. W. (1977). Cosmological event horizons, thermodynamics, and particle creation, Physical Review, D15, 2738–51.Find this resource:

Gibbons, G. W., Shellard, E. P. S., and Rankin, S. J. (Eds.) (2003). The Future of Theoretical Physics and Cosmology. Cambridge: Cambridge University Press.Find this resource:

Gillespie, R. (2011). The Great Melbourne Telescope. Melbourne: Museum Victoria.Find this resource:

Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. (2013). The distance to the galactic center, in Advancing the Physics of Cosmic Distances, ed. de Grijs, R., volume 289 of IAU Symposium Series, pp. 29–35.Find this resource:

Gillessen, S., Eisenhauer, F., Trippe, S., et al. (2009). Monitoring stellar orbits around the massive black hole in the galactic center, Astrophysical Journal, 692, 1075–1109.Find this resource:

Gilli, R., Comastri, A., and Hasinger, G. (2007). The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era, Astronomy and Astrophysics, 463, 79–96.Find this resource:

Gillies, G. T. (1997). The Newtonian gravitational constant: recent measurements and related studies, Reports on Progress in Physics, 60, 151–223.Find this resource:

Gindilis, L. M. (2012). The development of radio astronomy at the Sternberg Astronomical Institute of Lomonosov Moscow State University and the Space Research Institute of the USSR Academy of Sciences, in A Brief History of Radio Astronomy in the USSR: A Collection of Scientific Essays (Vol. 382), ed. Braude, S., Dubinskii, B. A., Kaidanovskii, N. L., et al., pp. 89–116. Dordrecht: Springer.Find this resource:

(p. 553) Ginzburg, V. L. (1951). Cosmic rays as a source of galactic radio-radiation, Doklady Akademiya Nauk SSSR, 76, 377–80.Find this resource:

Gleiser, M. (2010). Drake equation for the multiverse: from the string landscape to complex life, International Journal of Modern Physics D, 19, 1299–308.Find this resource:

Goenner, H. (2001). Weyl’s contributions to cosmology, in Hermann Weyl’s ‘Raum-Zeit-Materie’ and a General Introduction to his Scientific Work, ed. Scholz, E., pp. 105–37. Basel: Birkhäuser.Find this resource:

Goenner, H. (2012). Some remarks on the genesis of scalar-tensor theories, General Relativity and Gravitation, 44, 2077–97.Find this resource:

Goenner, H. (2017). A golden age of general relativity? Some remarks on the history of general relativity, General Relativity and Gravitation, 49, 42.Find this resource:

Gold, T. (1965). After-dinner speech, in Quasi-stellar sources and gravitational collapse, ed. Robinson, I., Schild, A., and Schucking, E. L., p. 470. Chicago: University of Chicago Press.Find this resource:

Gold, T. (1968). Rotating neutron stars as the origin of pulsating radio sources, Nature, 218, 731–2.Find this resource:

Gold, T. and Pacini, F. (1968). Can the observed microwave background be due to a superposition of sources?, Astrophysical Journal Letters, 152, L115.Find this resource:

Goldhaber, G., Boyle, B., Bunclark, P., et al. (1996). Cosmological time dilation using type Ia supernovae as clocks, Nuclear Physics B Proceedings Supplements, 51, 123–7.Find this resource:

Goldhaber, M. (1956). Speculations on cosmogony, Science, 124, 218–19.Find this resource:

González-Díaz, P. F. (2003). You need not be afraid of phantom energy, Physical Review D, 68, 021303.Find this resource:

Goobar, A. and Perlmutter, S. (1995). Feasibility of measuring the cosmological constant Lambda and mass density Omega using type IA supernovae, Astrophysical Journal, 450, 14–18.Find this resource:

Goodman, J. (1995). Geocentrism reexamined, Physical Review D, 52, 1821–7.Find this resource:

Gorenstein, M. V., Muller, R. A., Smoot, G. F., et al. (1978). Radiometer system to map the cosmic background radiation, Review of Scientific Instruments, 49, 440–8.Find this resource:

Gott, J. (1993). Implications of the Copernican principle for our future prospects, Nature, 363, 315–19.Find this resource:

Gower, J. F. R. (1966). The source counts from the 4C Survey, Memoirs of the Royal Astronomical Society, 133, 151–61.Find this resource:

Gower, J. F. R., Scott, P. F., and Wills, D. (1967). A survey of radio sources in the declination ranges -07 to 20 and 40 to 80, Monthly Notices of the Royal Astronomical Society, 71, 49–144.Find this resource:

Graham, L. R. (1972). Science and Philosophy in the Soviet Union. New York: Alfred A. Knopf.Find this resource:

Graham Smith, F. (1951). An accurate determination of the positions of four radio stars, Nature, 168, 555.Find this resource:

Green, S. R. and Wald, R. M. (2014). How well is our universe described by an FLRW model?, Classical and Quantum Gravity, 31, 234003.Find this resource:

Greenstein, J. L. and Schmidt, M. (1964). Red-shifts of the radio sources 3C 48 and 3C 273, Astrophysical Journal, 140, 1–43.Find this resource:

Gregory, A. (2007). Ancient Greek Cosmogony. London: Duckworth.Find this resource:

Gregory, J. (2005). Fred Hoyle’s Universe. Oxford: Oxford Universtiy Press.Find this resource:

Greisen, K. (1966). End to the cosmic-ray spectrum?, Physical Review Letters, 16, 748–50.Find this resource:

Gribbin, J. R. (1976). Galaxy Formation. A Personal View, New York: John Wiley and Sons.Find this resource:

Gribbin, J. R. and Rees, M. J. (1989). Dark Matter, Mankind and Anthropic Cosmology. New York: Bantam Books.Find this resource:

Grünbaum, A. (1952). Some highlights of modern cosmology and cosmogony, Review of Metaphysics, 5, 481–98.Find this resource:

(p. 554) Gull, S. F. (1975). The X-ray, optical and radio properties of young supernova remnants, Monthly Notices of the Royal Astronomical Society, 171, 263–78.Find this resource:

Gunn, J. E. (1978). The Friedman models and optical observations in cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, ed. Maeder, A., Martinet, L., and Tammann, G., pp. 1–121. Geneva: Geneva Observatory Publications.Find this resource:

Gunn, J. E. and Peterson, B. A. (1965). On the density of neutral hydrogen in intergalactic space, Astrophysical Journal, 142, 1633–6.Find this resource:

Gurevich, L. E. (1975). On the origin of the metagalaxy, Astrophysics and Space Science, 38, 67–78.Find this resource:

Gursky, H., Giacconi, R., Paolini, F. R., et al. (1963). Further evidence for the existence of galactic X-rays, Physical Review Letters, 11, 530–5.Find this resource:

Gush, H. P. (1981). Rocket measurement of the cosmic background submillimeter spectrum, Physical Review Letters, 47, 745–8.Find this resource:

Gush, H. P., Halpern, M., and Wishnow, E. H. (1990). Rocket measurement of the cosmic-background-radiation mm-wave spectrum, Physical Review Letters, 65, 537–40.Find this resource:

Guth, A. H. (1981). Inflationary universe: a possible solution to the horizon and flatness problems, Physical Review D, 23, 347–56.Find this resource:

Guth, A. H. (1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading, MA: Addison-Wesley.Find this resource:

Guth, A. H. (2007). Eternal inflation and its implications, Journal of Physics A: Mathematical and Theoretical, 40, 6811–26.Find this resource:

Guth, A. H. and Pi, S.-Y. (1982). Fluctuations in the new inflationary universe, Physical Review Letters, 49, 1110–13.Find this resource:

Guth, A. H. and Tye, S.-H. H. (1980). Phase transitions and magnetic monopole production in the very early universe, Physical Review Letters, 44, 631–5.Find this resource:

Hale, G. E. (1928). The possibilities of large telescopes, Harper’s Magazine, 156, 639–46.Find this resource:

Hamilton, A. J. S., Kumar, P., Lu, E., et al. (1991). Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies, Astrophysical Journal, 374, L1–L4.Find this resource:

Hannestad, S. and Mersini-Houghton, L. (2005). First glimpse of string theory in the sky?, Physical Review D, 71, 123504.Find this resource:

Hanson, D., Hoover, S., Crites, A., et al. (2013). Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope, Physical Review Letters, 111, 141301.Find this resource:

Hanson, N. (1963). Some philosophical aspects of contemporary cosmologies, in Philosophy of Science: The Delaware Seminar, Vol.2, ed. Baumrin, B., pp. 465–82. New York: Interscience.Find this resource:

Häring, N. and Rix, H. (2004). On the black hole mass–bulge mass relation, Astrophysical Journal Letters, 604, L89–L92.Find this resource:

Harms, R. J., Ford, H. C., Tsvetanov, Z. I., et al. (1994). HST FOS spectroscopy of M87: evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L35–8.Find this resource:

Harper, E. (2001). George Gamow: Scientific amateur and polymath, Physics in Perspective, 3, 335–72.Find this resource:

Harrison, E. R. (1970). Fluctuations at the threshold of classical cosmology, Physical Review, D1, 2726–30.Find this resource:

Harrison, E. R. (1986). Newton and the infinite universe, Physics Today, 39, 24–32.Find this resource:

Harrison, E. R. (1987). Darkness at Night: A Riddle of the Universe. Cambridge: Cambridge University Press.Find this resource:

(p. 555) Harrison, E. R. (1993). The redshift–distance and velocity–distance law, Astrophysical Journal, 403, 28–31.Find this resource:

Harrison, E. R. (1995). The natural selection of universes containing intelligent life, Quarterly Journal of the Royal Astronomical Society, 36, 193–203.Find this resource:

Harrison, E. R. (2000). Cosmology. The Science of the Universe. Cambridge: Cambridge University Press.Find this resource:

Hart, R. (1973). Adriaan van Maanen’s influence on the island universe theory. PhD thesis, Boston University.Find this resource:

Hartle, J. B. (2003). Gravity. An Introduction to Einstein’s General Relativity. San Francisco: Addison Wesley.Find this resource:

Harvey, B. and Zakutnyaya, O. (2011). Russian Space Probes: Scientific Discoveries and Future Missions. Dordrecht: Springer.Find this resource:

Harzer, P. (1908). Die Sterne und der Raum, Jahresbericht der Deutschen Mathematiker-Vereinigung, 17, 237–67.Find this resource:

Hasinger, G., Burg, R., Giacconi, R., et al. (1993). A deep X-ray survey in the Lockman Hole and the soft X-ray log N–log S, Astronomy and Astrophysics, 275, 1–15.Find this resource:

Hauser, M. G. and Dwek, E. (2001). The cosmic infrared background: measurements and implications, Annual Review of Astronomy and Astrophysics, 39, 249–307.Find this resource:

Hausman, M. A. and Ostriker, J. P. (1977). Cannibalism among galaxies – dynamically produced evolution of cluster luminosity functions, Astrophysical Journal, 217, L125–9.Find this resource:

Hawking, S. W. (1969). On the rotation of the Universe, Monthly Notices of the Royal Astronomoical Society, 142, 129–41.Find this resource:

Hawking, S. W. (1972). Black holes in general relativity, Communications in Mathematical Physics, 25, 152–66.Find this resource:

Hawking, S. W. (1975). Particle creation by black holes, in Quantum Gravity: Proceedings of the Oxford Symposium, ed. Isham, C. J., Penrose, R., and Sciama, D. W., pp. 219–67. Oxford: Clarendon Press.Find this resource:

Hawking, S. W. and Ellis, G. R. (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press.Find this resource:

Hawking, S. W. and Mlodinow, L. (2010). The Grand Design. London: Bantam Press.Find this resource:

Hawking, S. W. and Penrose, R. (1969). The singularities of gravitational collapse and cosmology, Proceedings of the Royal Society, A314, 529–48.Find this resource:

Hayakawa, S. and Matsuoka, M. (1964). Part V. Origin of cosmic X-rays, Supplement of Progress of Theoretical Physics (Japan), 30, 204–28.Find this resource:

Hayashi, C. (1950). Proton–neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Progress of Theoretical Physics (Japan), 5, 224–35.Find this resource:

Hazard, C. and Salpeter, E. E. (1969). Discrete sources and the microwave background in steady state cosmologies, Astrophysical Journal Letters, 157, L87.Find this resource:

Hazard, C., Mackey, M. B., and Shimmins, A. J. (1963). Investigation of the radio source 3C 273 by the method of lunar occultations, Nature, 197, 1037–9.Find this resource:

Hearnshaw, J. (2014). The Analysis of Starlight: Two Hundred Years of Astronomical Spectroscopy. Cambridge: Cambridge University Press.Find this resource:

Heckmann, O. and Schücking, E. (1959). Andere kosmologische Theorien, in Handbuch der Physik, vol. 53, ed. Flügge, S., pp. 320–57. Berlin: Springer.Find this resource:

Heller, M. and Szydlowski, M. (1983). Tolman’s cosmological models, Astrophysics and Space Science, 90, 327–35.Find this resource:

Henderson, A. (1925). Is the universe finite?, The American Mathematical Monthly, 32, 213–23.Find this resource:

(p. 556) Henning, J. W., Sayre, J. T., Reichardt, C. L., et al. (2018). Measurements of the temperature and E-mode polarization of the CMB from 500 square degrees of SPTpol data, Astrophysical Journal, 852, 97.Find this resource:

Henry, P. S. (1971). Isotropy of the 3 K background, Nature, 231, 516–18.Find this resource:

Hentschel, K. (1997). The Einstein Tower. Stanford: Stanford University Press.Find this resource:

Hentschel, K. (2002). Mapping the Spectrum: Techniques of Visual Representation in Research and Teaching. Oxford: Oxford University Press.Find this resource:

Henyey, L. G. and Keenan, P. C. (1940). Interstellar radiation from free electrons and hydrogen atoms, Astrophysical Journal, 91, 625–30.Find this resource:

Herschel, J. (1822). Address of the Society explanatory of their views and objects, Memoirs of the Astronomical Society of London, 1, 1–7.Find this resource:

Herschel, J. (1826). Account of some observations made with a 20-feet Reflecting telescope …, Memoirs of the Royal Astronomical Society, Vol. II.Find this resource:

Herschel, J. (1847). Results of Astronomical Observations Made During the Years 1834, 5, 6, 7, 8, at the Cape of Good Hope …. London: Smith, Elder, and Co.Find this resource:

Herschel, W. (1802). Catalogue of 500 new nebulae, nebulous stars, planetary nebulae, and clusters of stars; with remarks on the construction of the heavens, Philosophical Transactions of the Royal Society of London Series I, 92, 477–528.Find this resource:

Herschel, W. (1811). Astronomical observations relating to the construction of the heavens, arranged for the purpose of a critical examination …, Philosophical Transactions of the Royal Society of London, 101, 269–336.Find this resource:

Hertzsprung, E. (1913). Über die räumliche Verteilung der Veränderlichen vom δ-Cephei-Typus, Astronomische Nachrichten, 196, cols. 201–10.Find this resource:

Herzberg, G. (1950). Molecular Spectra and Molecular Structure. Vol.1: Spectra of Diatomic Molecules. New York: Van Nostrand Reinhold.Find this resource:

Hess, V. F. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, (Concerning observations of penetrating radiation on seven free balloon flights), Physikalische Zeitschrift, 13, 1084–91.Find this resource:

Hesser, J. E., Harris, W. E., VandenBerg, D. A., et al. (1989). A CCD color-magnitude study of 47 Tucanae, Publications of the Astronomical Society of the Pacific, 99, 739–808.Find this resource:

Hetherington, N. S. (1982). Philosophical values and observations in Edwin Hubble’s choice of a model of the universe, Historical Studies in the Physical Sciences, 13, 41–67.Find this resource:

Hetherington, N. S. (1990). The Edwin Hubble Papers. Previously Unpublished Manuscripts on the Extragalactic Nature of Spiral Nebulae. Tucson: Pachart.Find this resource:

Hetherington, N. S. (1996). Hubble’s Cosmology: A Guided Study of Selected Texts. Tucson: Pachart Publishing House.Find this resource:

Hewish, A. (1986). The pulsar era, Quarterly Journal of the Royal Astronomical Society, 27, 548–58.Find this resource:

Hewish, A., Bell, S. J., Pilkington, J. D. H., et al. (1968). Observations of a rapidly pulsating radio source, Nature, 217, 709–13.Find this resource:

Hewitt, J. N., Turner, E. L., Burke, B. F., et al. (1987). A VLA gravitational lens survey, in Observational Cosmology: IAU Symposium No. 124, ed. Hewitt, A., Burbidge, G., and Fang, L. Z., pp. 747–50. Dordrecht: D. Reidel Publishing Company.Find this resource:

Hey, J. S. (1946). Solar radiations in the 4–6 metre radio wave-length band, Nature, 157, 47–8.Find this resource:

Hey, J. S., Parsons, S. J., and Phillips, J. W. (1946). Fluctuations in cosmic radiation at radio-frequencies, Nature, 158, 234.Find this resource:

Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields, Physics Letters, 12, 132–3.Find this resource:

(p. 557) Hinshaw, G., Spergel, D. N., Verde, L., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: the angular power spectrum, Astrophysical Journal Supplement, 148, 135–59.Find this resource:

Hirata, C. M., Ho, S., Padmanabhan, N., et al. (2008). Correlation of CMB with large-scale structure. II. Weak lensing, Physical Review D, 78, 043520.Find this resource:

Hirsh, R. F. (1979). The riddle of the gaseous nebulae, Isis, 70, 197–212.Find this resource:

Hjellming, R. and Wade, C. (1971). Further radio observations of Scorpius X-1, Astrophysical Journal, 170, 523–8.Find this resource:

Hjorth, J., Sollerman, J., Møller, P., et al. (2003). A very energetic supernova associated with the γ-ray burst of 29 March 2003, Nature, 423, 847–50.Find this resource:

Hobson, M. P., Jaffe, A. H., Liddle, A. R., et al. (2013). Bayesian Methods in Cosmology. Cambridge: Cambridge University Press.Find this resource:

Hogan, C. J. (2000). Why the universe is just so, Reviews of Modern Physics, 72, 1149–61.Find this resource:

Hogg, D. W., Eisenstein, D. J., Blanton, M. R., et al. (2005). Cosmic homogeneity demonstrated with luminous red galaxies, Astrophysical Journal, 624, 54–8.Find this resource:

Hohl, F. (1971). Numerical experiments with a disk of stars, Astrophysical Journal, 168, 343–59.Find this resource:

Holberg, J. B. (2010). Sirius B and the measurement of the gravitational redshift, Journal for the History of Astronomy, 41, 41–64.Find this resource:

Holder, R. and Mitton, S. (Eds.) (2012). Georges Lemaître: Life, Science and Legacy. Berlin: Springer-Verlag.Find this resource:

Holman, M. (2018). How problematic is the near-euclidean spatial geometry of the large-scale universe? Foundations of Physics, 48, 1617–47.Find this resource:

Holmberg, G. (1999). Reaching for the Stars: Studies in the History of Swedish Stellar and Nebular Astronomy 1860–1940. Lund: Ugglan.Find this resource:

Holmes, R. (2008). The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science. New York: Harper Collins Publishers.Find this resource:

Holton, G. (1988). Thematic Origins of Scientific Thought: Kepler to Einstein. Cambridge, MA: Harvard University Press.Find this resource:

Holton, G. (1993). Science and Anti-science. Cambridge, MA: Harvard University Press.Find this resource:

Hoskin, M. (1967). Apparatus and ideas in mid-nineteenth century cosmology, Vistas in Astronomy, 9, 79–85.Find this resource:

Hoskin, M. (1976a). The ‘Great Debate’: what really happened, Journal for the History of Astronomy, 7, 169–82.Find this resource:

Hoskin, M. (1976b). Ritchey, Curtis and the discovery of novae in spiral nebulae, Journal for the History of Astronomy, 7, 47–53.Find this resource:

Hoskin, M. (1982). William Herschel’s investigations of nebulae, in Stellar Astronomy: Historical Studies, Chalfont St. Giles, UK: Science History Publication, pp. 125–36.Find this resource:

Hoskin, M. (1987). John Herschel’s cosmology, Journal for the History of Astronomy, 18, 1–34.Find this resource:

Hoskin, M. (1990). Rosse, Robinson, and the resolution of the nebulae, Journal for the History of Astronomy, 21, 331–44.Find this resource:

Hoskin, M. (2011). Discoverers of the Universe: William and Caroline Herschel. Princeton: Princeton University Press.Find this resource:

Hoskin, M. (2012). The Construction of the Heavens: William Herschel’s Cosmology. Cambridge: Cambridge University Press.Find this resource:

Hoskin, M. (2013). Caroline Herschel: Priestess of the New Heavens. Sagamore Beach, MA: Watson Publishing International.Find this resource:

Howell, T. F. and Shakeshaft, J. R. (1966). Measurement of the minimum cosmic background radiation at 20.7-cm wave-length, Nature, 210, 1318–19.Find this resource:

(p. 558) Howell, T. F. and Shakeshaft, J. R. (1967). Spectrum of the 3° K cosmic microwave radiation, Nature, 216, 753–4.Find this resource:

Hoyle, F. (1948). A new model for the expanding universe, Monthly Notices of the Royal Astronomical Society, 108, 372–82.Find this resource:

Hoyle, F. (1950). The Nature of the Universe. Oxford: Blackwell.Find this resource:

Hoyle, F. (1954). On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel, Astrophysical Journal Supplement, 1, 121–46.Find this resource:

Hoyle, F. (1955). Frontiers of Astronomy. London: William Heinemann.Find this resource:

Hoyle, F. (1975). Astronomy and Cosmology: A Modern Course. San Francisco: WH Freeman and Co.Find this resource:

Hoyle, F. (1982). Steady state cosmology revisited, in Cosmology and Astrophysics, ed. Terzian, Y. and Bilson, E., pp. 17–57.Find this resource:

Hoyle, F. (1990). An assessment of the evidence against the steady-state theory, in Modern Cosmology in Retrospect, ed. Bertotti, B. et al., pp. 221–31. Cambridge: Cambridge University Press.Find this resource:

Hoyle, F. and Fowler, W. A. (1962). On the nature of strong radio sources, Monthly Notices of the Royal Astronomical Society, 125, 169–76.Find this resource:

Hoyle, F. and Fowler, W. A. (1963). Nature of strong radio sources, Nature, 197, 533–5.Find this resource:

Hoyle, F. and Narlikar, J. V. (1966). A radical departure from the ‘steady-state’ concept in cosmology, Proceedings of the Royal Society of London Series A, 290, 162–76.Find this resource:

Hoyle, F. and Narlikar, J. V. (1972). Cosmological models in a conformally invariant gravitational theory, Monthly Notices of the Royal Astronomical Society, 155, 305–21, 323–35.Find this resource:

Hoyle, F. and Tayler, R. J. (1964). The mystery of the cosmic helium abundance, Nature, 203, 1108–10.Find this resource:

Hoyle, F. and Wickramasinghe, N. C. (1967). Impurities in interstellar grains, Nature, 214, 969–71.Find this resource:

Hoyle, F., Burbidge, G. R., and Narlikar, J. (2000). A Different Approach to Cosmology. Cambridge: Cambridge University Press.Find this resource:

Hoyle, F., Burbidge, G. R., and Sargent, W. L. W. (1966). On the nature of the quasi-stellar sources, Nature, 209, 751–3.Find this resource:

Hoyt, W. G. (1976). Lowell and Mars. Tucson: University of Arizona Press.Find this resource:

Hu, W. and Dodelson, S. (2002). Cosmic microwave background anisotropies, Annual Review of Astronomy and Astrophysics, 40, 171–216.Find this resource:

Hu, W. and White, M. (1997). A CMB polarization primer, New Astronomy, 2, 323–44.Find this resource:

Hu, W. and White, M. (2004). The cosmic symphony, Scientific American, 290, 44–53.Find this resource:

Hu, W., Sugiyama, N., and Silk, J. (1997). The physics of microwave background anisotropies, Nature, 386, 37–43.Find this resource:

Hubble, E. (1920). Photographic investigations of giant nebulae, Publications of the Yerkes Observatory, 4, 69–85.Find this resource:

Hubble, E. (1925). NGC6822, a remote stellar system, Astrophysical Journal, 62, 409–33.Find this resource:

Hubble, E. (1926a). Extra-galactic nebulae, Astrophysical Journal, 64, 321–69.Find this resource:

Hubble, E. (1926b). A spiral nebula as a stellar system, Messier 33, Astrophysical Journal, 63, 236–74.Find this resource:

Hubble, E. (1929a). A relation between distance and radial velocity among extra-galactic nebulae, Proceedings of the National Academy of Sciences, 15, 168–73.Find this resource:

Hubble, E. (1929b). A spiral nebula as a stellar system, Messier 31, Astrophysical Journal, 69, 103–58.Find this resource:

Hubble, E. (1934a). The distribution of extra-galactic nebulae, Astrophysical Journal, 79, 8–76.Find this resource:

(p. 559) Hubble, E. (1934b). Red-Shifts in the Spectra of Nebulae. Oxford: Clarendon Press.Find this resource:

Hubble, E. (1935). Angular rotations of spiral nebulae, Astrophysical Journal, 81, 334–5.Find this resource:

Hubble, E. (1936a). Effects of red shifts on the distribution of nebulae, Astrophysical Journal, 84, 517–54.Find this resource:

Hubble, E. (1936b). The Realm of the Nebulae. New Haven: Yale University Press.Find this resource:

Hubble, E. (1937). Red-shifts and the distribution of nebulae, Monthly Notices of the Royal Astronomical Society, 97, 506–13.Find this resource:

Hubble, E. (1938). Adventures in cosmology, Astronomical Society of the Pacific leaflets, 3, 120–3.Find this resource:

Hubble, E. and Humason, M. (1931). The velocity–distance relation among extra-galactic nebulae, Astrophysical Journal, 74, 43–80.Find this resource:

Hubble, E. and Tolman, R. C. (1935). Two methods of investigating the nature of the nebular red-shift, Astrophysical Journal, 82, 302–37.Find this resource:

Hudson, M. J., Dekel, A., Courteau, S., et al. (1995). Ω and biasing from optical galaxies versus POTENT mass, Monthly Notices of the Royal Astronomical Society, 274, 305–16.Find this resource:

Hufbauer, K. (1991). Exploring the Sun: Solar Science since Galileo. Baltimore: Johns Hopkins University Press.Find this resource:

Huggins, W. (1864). On the spectra of some of the nebulae, Philosophical Transactions of the Royal Society of London, 154, 437–44.Find this resource:

Huggins, W. (1865). On the spectrum of the Great Nebula in the sword-handle of Orion, Proceedings of the Royal Society of London, 14, 39–42.Find this resource:

Huggins, W. (1891). Presidential address, British Association for the Advancement of Science, Cardiff 1891, in The Scientific Papers of Sir William Huggins (with M. L. Huggins), ed. Huggins, W. and Huggins, M. L., pp. 504–39. London: William Wesley and Son.Find this resource:

Huggins, W. (1897). The new astronomy: a personal retrospect, The Nineteenth Century: A Monthly Review, 41, 907–28.Find this resource:

Huggins, W. and Huggins, M. (1909). The Scientific Papers of Sir William Huggins. London: William Wesley and Son.Find this resource:

Hulse, R. A. and Taylor, J. H. (1975). Discovery of a pulsar in a binary system, Astrophysical Journal Letters, 195, L51–3.Find this resource:

Humason, M. (1934). The apparent velocity of a nebula in the Böotis cluster no. 1, Publications of the Astronomical Society of the Pacific, 46, 290–2.Find this resource:

Humason, M. L., Mayall, N. U., and Sandage, A. R. (1956). Redshifts and magnitudes of extra-galactic Nebulae, Astronomical Journal, 61, 97–162.Find this resource:

Hutten, E. H. (1962). Methodological remarks concerning cosmology, The Monist, 47, 104–15.Find this resource:

Ijjas, A., Steinhardt, P. J., and Loeb, A. (2014). Inflationary schism, Physics Letters B, 736, 142–6.Find this resource:

Isham, C. and Butterfield, J. (2000). On the emergence of time in quantum gravity, in The Arguments of Time, ed. Butterfield, J., pp. 111–68. Oxford: Oxford University Press.Find this resource:

Israel, W. (1987). Dark stars: the evolution of an idea, in 300 Years of Gravitation, ed. Hawking, S. W. and Israel, W., pp. 199–276. Cambridge: Cambridge University Press.Find this resource:

Israelit, M. and Rosen, N. (1989). A singularity-free cosmological model in general relativity, Astrophysical Journal, 342, 627–34.Find this resource:

Jaki, S. L. (1969). The Paradox of Olbers’ Paradox. New York: Herder and Herder.Find this resource:

Jaki, S. L. (1974). Science and Creation. From Eternal Cycles to an Oscillating Universe. Edinburgh: Scottish Academic Press.Find this resource:

Jaki, S. L. (1977). Planets and Planetarians: A History of Theories of the Origin of Planetary Systems. New York: John Wiley and Sons.Find this resource:

(p. 560) Jaki, S. L. (1979). Das Gravitations-Paradoxon des unendlichen Universums, Sudhoffs Archiv, 63, 105–22.Find this resource:

James, W. (1895). Is life worth living?, International Journal of Ethics, 6, 1–24.Find this resource:

Jansky, K. G. (1933). Electrical disturbances apparently of extraterrestrial origin, Proceedings of the Institution of Radio Engineers, 21, 1387–98.Find this resource:

Janssen, M. (2014). No success like failure …, in The Cambridge Companion to Einstein, ed. Janssen, M. and Lehner, C., pp. 167–227. Cambridge: Cambridge University Press.Find this resource:

Jeans, J. H. (1902). The stability of a spherical nebula, Philosophical Transactions of the Royal Society of London, 199, 1–53.Find this resource:

Jeans, J. H. (1917). Internal motions in spiral nebulae, The Observatory, 40, 60–1.Find this resource:

Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics. Cambridge: Cambridge University Press.Find this resource:

Jenkins, A. and Perez, G. (2010). Looking for life in the multiverse, Scientific American, 302(1), 42–9.Find this resource:

Jennison, R. C. and Das Gupta, M. K. (1953). Fine structure of the extra-terrestrial radio source Cygnus 1, Nature, 172, 996–7.Find this resource:

Jiménez, J. B., Lazkoz, R., Sáez-Gómez, D., et al. (2016). Observational constraints on cosmological future singularities, European Physical Journal C, 76, 631.Find this resource:

Jöeveer, M. and Einasto, J. (1978). Has the universe the cell structure?, in The Large Scale Structure of the Universe, ed. Longair, M. S. and Einasto, J., pp. 241–51. Dordrecht: D. Reidel Publishing Company.Find this resource:

Johnson, D. G. and Wilkinson, D. T. (1987). A 1 percent measurement of the temperature of the cosmic microwave radiation at λ = 1.2 centimeters, Astrophysical Journal Letters, 313, L1–L4.Find this resource:

Jordan, P. (1952). Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie. Braunschweig: Vieweg & Sohn.Find this resource:

Jordan, P. (1971). The Expanding Earth: Some Consequences of Dirac’s Gravitation Hypothesis. Oxford: Pergamon Press.Find this resource:

Jung, T. (2005). Franz Selety (1893–1933?): Seine kosmologische Arbeiten und der Briefwechsel mit Einstein, in Einsteins Kosmos, ed. Duerbeck, H. W. and Dick, W. R., pp. 125–42. Frankfurt am Main: Harri Deutsch.Find this resource:

Kahane, G. (2014). Our cosmic insignificance, Nous, 48, 745–72.Find this resource:

Kaiser, C. R. and Alexander, P. (1997). A self-similar model for extragalactic radio sources, Monthly Notices of the Royal Astronomical Society, 286, 215–22.Find this resource:

Kaiser, D. (2005). Making tools travel: pedagogy and the transfer of skills in postwar theoretical physics., in Pedagogy and the Practice of Science: Historical and Contemporary Perspectives, ed. Kaiser, D., pp. 41–74. Cambridge MA: MIT Press.Find this resource:

Kaiser, D. (2006). Whose mass is it anyway? Particle cosmology and the objects of theory, Social Studies of Science, 36, 533–64.Find this resource:

Kaiser, N. (1984). On the spatial correlations of Abell clusters, Astrophysical Journal, 284, L9–L12.Find this resource:

Kaiser, N. (1987). Clustering in real space and in redshift space, Monthly Notices of the Royal Astronomical Society, 227, 1–21.Find this resource:

Kamionkowski, M., Kosowsky, A., and Stebbins, A. (1997). Statistics of cosmic microwave background polarization, Physical Review D, 55, 7368–88.Find this resource:

Kant, I. (1981). Universal Natural History and Theory of the Heavens. Edinburgh: Scottish Academic Press.Find this resource:

Kantowski, R. and Sachs, R. K. (1966). Some spatially homogeneous anisotropic relativistic cosmological models, Journal of Mathematical Physics, 7, 443–6.Find this resource:

(p. 561) Kassiola, A., Kovner, I., and Blandford, R. D. (1991). Bounds on intergalactic compact objects from observations of compact radio sources, Astrophysical Journal, 381, 6–13.Find this resource:

Kauffmann, G., J. M. Colberg, J. M., Diaferio, A., et al. (1999). Clustering of galaxies in a hierarchical universe: I. Methods and results at z = 0, Monthly Notices of the Royal Astronomical Society, 303, 188–206.Find this resource:

Kaufman, M. (1965). Limits on the density of intergalactic ionized hydrogen, Nature, 207, 736–7.Find this resource:

Kazanas, D. (1980). Dynamics of the universe and spontaneous symmetry breaking, Astrophysical Journal Letters, 241, L59–L63.Find this resource:

Keeler, J. E. (1900). On the predominance of spiral forms among the nebulae, Astronomische Nachrichten, 151, cols. 165–81.Find this resource:

Kennedy, R. J. and Barkas, W. (1936). The nebular redshift, Physical Review, 49, 449–52.Find this resource:

Kennedy, R. J. and Thorndike, E. M. (1932). Experimental establishment of the relativity of time, Physical Review, 42, 400–18.Find this resource:

Kennefick, D. (2012). Not only because of theory: Dyson, Eddington, and the competing myths of the 1919 eclipse expedition, in Einstein and the Changing Worldviews of Physics, Einstein Studies. Vol. 12, ed. Lehner, C. et al., pp. 201–32. Boston: Birkäuser.Find this resource:

Kennicutt, R. C. (1989). The star formation law in galactic discs, Astrophysical Journal, 344, 685–703.Find this resource:

Kenyon, I. R. (1990). General Relativity. Oxford: Oxford University Press.Find this resource:

Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics, Physical Review Letters, 11, 237–8.Find this resource:

Kerszberg, P. (1989). The Invented Universe. The Einstein–de Sitter Controversy (1916–1917) and the Rise of Relativistic Cosmology. Oxford: Clarendon Press.Find this resource:

Kiang, T. and Saslaw, W. C. (1969). The distribution in space of clusters of galaxies, Monthly Notices of the Royal Astronomical Society, 143, 129–38.Find this resource:

Kibble, T. W. B. (1976). Topology of cosmic domains and strings, Journal of Physics A: Mathematical and General, 9, 1387–98.Find this resource:

Kiepenheuer, K. O. (1950). Cosmic rays as the source of general galactic radio emission, Physical Review, 79, 738–9.Find this resource:

Kilmister, C. (1994). Eddington’s Search for a Fundamental Theory. Cambridge: Cambridge University Press.Find this resource:

King, H. C. (1979). The History of the Telescope. New York: Dover Publications.Find this resource:

Kirchhoff, G. R. (1861). On the chemical analysis of the solar atmosphere, Philosophical Magazine, 21, 185–8.Find this resource:

Kirshner, R. P. and Kwan, J. (1974). Distances to extragalactic supernovae, Astrophysical Journal, 193, 27–36.Find this resource:

Kirshner, R. P. and Oke, B. (1975). Supernova 1972e in NGC 5253, Astrophysical Journal, 200, 574–81.Find this resource:

Kirzhnits, D. A. (1972). Weinberg model and the ’hot’ universe, Soviet Journal of Experimental and Theoretical Physics Letters, 15, 529–30.Find this resource:

Klebesadel, R. W., Strong, I. B., and Olson, R. A. (1973). Observations of gamma-ray bursts of cosmic origin, Astrophysical Journal Letters, 182, L85–8.Find this resource:

Klein, O. (1954). Some considerations in connection with the problem of the origin of the elements, in Les Processus Nucléaires dans les Astres, ed. Ledoux, P., pp. 42–51. Louvain: Société Royale des Sciences de Liège.Find this resource:

Klein, O. (1971). Arguments concerning relativity and cosmology, Science, 171, 339–45.Find this resource:

(p. 562) Kniffen, D. A., Chipman, E., and Gehrels, N. (1994). The gamma-ray sky according to Compton: a new window to the universe, in Frontiers of Space and Ground-Based Astronomy, ed. Wamsteker, W., Longair, M. S., and Kondo, Y., pp. 5–16. Dordrecht: Kluwer Academic Publishers.Find this resource:

Knobe, J., Olum, K. D., and Vilenkin, A. (2006). Philosophical implications of inflationary cosmology, The British Journal for the Philosophy of Science, 57, 47–67.Find this resource:

Knop, R. A., Aldering, G., Amanullah, R., et al. (2003). New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope, Astrophysical Journal, 598, 102–37.Find this resource:

Kochanek, C. S. (1996). Is there a cosmological constant?, Astrophysical Journal, 466, 638–59.Find this resource:

Koertge, N. (Ed.) (1998). A House Built on Sand: Exposing Postmodernist Myths about Science. Oxford: Oxford University Press.Find this resource:

Kogut, A., Bensadoun, M., de Amici, G., et al. (1990a). A measurement of the temperature of the cosmic microwave background at a frequency of 7.5 GHz, Astrophysical Journal, 355, 102–13.Find this resource:

Kogut, A., Smoot, G. F., Petuchowski, S. J., et al. (1990b). In situ measurement of the cosmic microwave background temperature at a distance of 7.5 kiloparsecs, Astrophysical Journal Letters, 348, L45–8.Find this resource:

Kogut, A., Spergel, D. N., Barnes, C., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature–polarization correlation, Astrophysical Journal Supplement, 148, 161–73.Find this resource:

Kohler, M. (1933). Beitrage zum Kosmologischen Problem und zur Lichtausbreitung in Schwerefeldern, Annalen der Physik, 408, 129–61.Find this resource:

Kolb, E. W. and Turner, M. S. (1990). The Early Universe. Redwood City, CA: Addison-Wesley Publishing Co.Find this resource:

Kompaneets, A. (1956). The Establishment of thermal equilibrium between quanta and electrons, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 31, 876–85. Translation: (1957), Soviet Physics JETP, 4, 730–7.Find this resource:

Koo, D. C. and Kron, R. (1982). QSO counts – a complete survey of stellar objects to B = 23, Astronomy and Astrophysics, 105, 107–19.Find this resource:

Koonin, E. V. (2007). The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life, Biology Direct, 2, 15.Find this resource:

Kormendy, J. and Richstone, D. O. (1995). Inward bound—the search for supermassive black holes in galactic nuclei, Annual Review of Astronomy and Astrophysics, 33, 581–624.Find this resource:

Kovac, J. M., Leitch, E. M., Pryke, C., et al. (2002). Detection of polarization in the cosmic microwave background using DASI, Nature, 420, 772–87.Find this resource:

Kragh, H. (1990). Dirac: A Scientific Biography. Cambridge: Cambridge University Press.Find this resource:

Kragh, H. (1991). Cosmonumerology and empiricism: the Dirac–Gamow dialogue, Astronomical Quarterly, 8, 109–26.Find this resource:

Kragh, H. (1995). Cosmology between the wars: the Nernst–MacMillan alternative, Journal for the History of Astronomy, 26, 93–115.Find this resource:

Kragh, H. (1996). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton: Princeton University Press.Find this resource:

Kragh, H. (1997). The electrical universe: grand cosmological theory versus mundane experiments, Perspectives on Science, 5, 199–231.Find this resource:

Kragh, H. (1999). Steady-state cosmology and general relativity: reconciliation or conflict?, in The Expanding World of General Relativity, ed. Goenner, H. et al., pp. 377–402. Boston: Birkhäuser.Find this resource:

Kragh, H. (2001). From geochemistry to cosmochemistry: the origin of a scientific discipline, in Chemical Sciences in the 20th Century, ed. Reinhardt, C., pp. 160–90. Weinheim: Wiley-VCH.Find this resource:

(p. 563) Kragh, H. (2004). Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology. London: Imperial College Press.Find this resource:

Kragh, H. (2006). Cosmologies with varying speed of light: a historical perspective, Studies in History and Philosophy of Modern Physics, 37, 726–37.Find this resource:

Kragh, H. (2007). Conceptions of Cosmos. From Myths to the Accelerating Universe: A History of Cosmology. Oxford: Oxford University Press.Find this resource:

Kragh, H. (2008a). Entropic Creation. Religious Contexts of Thermodynamics and Cosmology. London: Ashgate.Find this resource:

Kragh, H. (2008b). The origin and earliest reception of big bang cosmology, Publications of the Astronomical Observatory of Belgrade, 85, 7–16.Find this resource:

Kragh, H. (2008c). Pierre Duhem, entropy, and Christian faith, Physics in Perspective, 10, 379–95.Find this resource:

Kragh, H. (2009a). Contemporary history of cosmology and the controversy over the multiverse, Annals of Science, 66, 529–51.Find this resource:

Kragh, H. (2009b). The solar element: a reconsideration of helium’s early history, Annals of Science, 66, 157–82.Find this resource:

Kragh, H. (2009c). Continual fascination: the oscillating universe in modern cosmology, Science in Context, 22, 587–612.Find this resource:

Kragh, H. (2010). An anthropic myth: Fred Hoyle’s carbon-12 resonance level, Archive for History of Exact Sciences, 64, 721–51.Find this resource:

Kragh, H. (2011). Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology. Oxford: Oxford University Press.Find this resource:

Kragh, H. (2012a). Is space flat? Nineteenth-century astronomy and non-Euclidean geometry, Journal of Astronomical History and Heritage, 15, 149–58.Find this resource:

Kragh, H. (2012b). The wildest speculation of all: Lemaître and the primeval-atom universe, in Georges Lemaître: Life, Science and Legacy, ed. Holder, R. D. and Mitton, S., pp. 23–38. Berlin: Springer.Find this resource:

Kragh, H. (2012c). Zöllner’s universe, Physics in Perspective, 14, 392–420.Find this resource:

Kragh, H. (2013a). Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics, European Physical Journal H, 38, 549–72.Find this resource:

Kragh, H. (2013b). Science and ideology: the case of cosmology in the Soviet Union, 1947–1963, Acta Baltica Historiae et Philosophiae Scientiarum, 1, 35–66.Find this resource:

Kragh, H. (2013c). ‘The most philosophically important of all the sciences’: Karl Popper and physical cosmology, Perspectives on Science, 21, 325–57.Find this resource:

Kragh, H. (2014a). Naming the big bang, Historical Studies in the Natural Sciences, 44, 3–36.Find this resource:

Kragh, H. (2014b). Testability and epistemic shifts in modern cosmology, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46, 48–56.Find this resource:

Kragh, H. (2014c). The true (?) story of Hilbert’s infinite hotel. arXiv preprint arXiv:1403.0059.Find this resource:

Kragh, H. (2015a). Masters of the Universe: Conversations with Cosmologists of the Past. Oxford: Oxford University Press.Find this resource:

Kragh, H. (2015b). Pascual Jordan, varying gravity, and the expanding Earth, Physics in Perspective, 17, 107–34.Find this resource:

Kragh, H. (2016a). The source of solar energy, ca. 1840–1910: from meteoric hypothesis to radioactive speculations, European Physical Journal H, 41, 365–94.Find this resource:

Kragh, H. (2016b). Varying Gravity: Dirac’s Legacy in Cosmology and Geophysics. Basel: Birkhäuser.Find this resource:

Kragh, H. (2017a). Eddington’s dream: a failed theory of everything, in Information and Interaction: Eddington, Wheeler, and the Limits of Knowledge, ed. Rickles, D. and Durham, I., pp. 45–58. Basel: Springer.Find this resource:

(p. 564) Kragh, H. (2017b). Fundamental theories and epistemic shifts: can history of science serve as a Guide? arXiv preprint arXiv:1702.5648.Find this resource:

Kragh, H. (2017c). The Nobel Prize system and the astronomical sciences, Journal for the History of Astronomy, 48, 257–80.Find this resource:

Kragh, H. (2017d). Is the universe expanding? Fritz Zwicky and early tired-light hypotheses, Journal of Astronomical History and Heritage, 20, 2–12.Find this resource:

Kragh, H. and Lambert, D. (2007). The context of discovery: Lemaître and the origin of the primeval-atom hypothesis, Annals of Science, 64, 445–70.Find this resource:

Kragh, H. and Smith, R. (2003). Who discovered the expanding universe?, History of Science, 41, 141–62.Find this resource:

Kraushaar, W. L., Clark, G. W., Garmire, G. P., et al. (1965). Explorer XI experiment on cosmic gamma rays, Astrophysical Journal, 141, 845–63.Find this resource:

Krauss, L. M. and Scherrer, R. J. (2007). The return of a static universe and the end of cosmology, General Relativity and Gravitation, 39, 1545–50.Find this resource:

Krauss, L. M. and Starkman, G. D. (2000). Life, the universe, and nothing: life and death in an ever-expanding universe, The Astrophysical Journal, 531, 22–30.Find this resource:

Krauss, L. M. and Turner, M. S. (1999). Geometry and destiny, General Relativity and Gravitation, 31, 1453–9.Find this resource:

Krige, J., Long, A., Maharaj, A., et al. (2013). NASA in the World: Fifty Years of International Collaboration in Space. New York: Palgrave.Find this resource:

Kristian, J. and Sachs, R. (1966). Observations in cosmology, Astrophysical Journal, 143, 379–99.Find this resource:

Křížek, M. and Somer, L. (2016). Excessive extrapolations in cosmology, Gravitation and Cosmology, 22, 270–80.Find this resource:

Kruskal, M. D. (1960). Maximal Extension of Schwarzschild Metric, Physical Review, 119, 1743–5.Find this resource:

Krymsky, G. F. (1977). A regular mechanism for the acceleration of charged particles on the front of a shock wave, Doklady Akademiya Nauk SSSR, 234, 1306–8.Find this resource:

Krzeminski, W. (1973). The identification and UBV photometry of the visible component of the Centaurus X-3 binary system, International Astronomical Union Circular No.2612.Find this resource:

Krzeminski, W. (1974). The identification and UBV photometry of the visible component of the Centaurus X-3 binary system, Astrophysical Journal Letters, 192, L135–L138.Find this resource:

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Find this resource:

Kuhn, T. S. (1970). The Structure of Scientific Revolutions, second edition. Chicago: University of Chicago Press.Find this resource:

Lachieze-Rey, M. and Luminet, J. (1995). Cosmic topology, Physics Reports, 254, 135–214.Find this resource:

Lagache, G., Dole, H., and Puget, J.-L. (2003). Modelling infrared galaxy evolution using a phenomenological approach, Monthly Notices of the Royal Astronomical Society, 338, 555–71.Find this resource:

Lagache, G., Dole, H., Puget, J.-L., et al. (2004). Polycyclic aromatic hydrocarbon contribution to the infrared output energy of the universe at z ≃2, Astrophysical Journal Supplement, 154, 112–17.Find this resource:

Lambert, D. (2007). L’Itinéraire Spirituel de Georges Lemaître. Brussels: Lessius.Find this resource:

Lambert, D. (2015). The Atom of the Universe: The Life and Work of Georges Lemaître. Kraków: Copernicus Center Press.Find this resource:

Lambert, J. H. (1761). Cosmologische Briefe über die Einrichtung des Weltbaues. Augsburg: Eberhard Kletts Wittib.Find this resource:

Lanczos, K. (1922). Bemerkung zur de Sitterschen Welt (Remarks on de Sitter’s world model), Physikalische Zeitschrift, 23, 539–43.Find this resource:

(p. 565) Lanczos, K. (1923). Über die Rotverschiebung in der de Sitterschen Welt, Physikalishe Zeitschrift, 17, 168–89.Find this resource:

Lanczos, K. (1924). Über eine stationäre Kosmologie in Sinne der Einsteinschen Gravitationstheorie, (On a stationary cosmology in the sense of Einstein’s theory of gravitation), Physikalishe Zeitschrift, 21, 73–110. English translation: (1997), General Relativity and Gravitation, 29, 363–99.Find this resource:

Lanczos, K. (1925). Über eine zeitlich periodische Welt und eine neue Behandlung des Problems der Ätherstrahlung, Zeitschrift fur Physik, 32, 56–80.Find this resource:

Landau, L. D. (1938). Origin of stellar energy, Nature, 141, 333–4.Find this resource:

Lane, K. (2011). Geographies of Mars: Seeing and Knowing the Red Planet. Chicago: University of Chicago Press.Find this resource:

Lang, K. and Gingerich, O. (Eds.) (1979). A Source Book in Astronomy and Astrophysics, 1900–1975. Cambridge, MA: Harvard University Press.Find this resource:

Lankford, J. (1997). The American Astronomy: Community, Careers and Power, 1859–1940. Chicago: University of Chicago Press.Find this resource:

Large, M. I., Vaughan, A. E., and Mills, B. Y. (1968). A pulsar supernova association?, Nature, 220, 340–1.Find this resource:

Last, C. (2017). Big historical foundations for deep future speculations: cosmic evolution, atechnogenesis, and technocultural civilization, Foundations of Science, 22, 39–124.Find this resource:

Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern, Critical Inquiry, 30, 225–48.Find this resource:

Laughlin, G., Bodenheimer, P., and Adams, F. C. (1997). The end of the Main Sequence, The Astrophysical Journal, 482, 420–32.Find this resource:

LaViolette, P. A. (1986). Is the universe really expanding?, Astrophysical Journal, 301, 544–53.Find this resource:

Layzer, D. (1968). Black-body radiation in a cold universe, Astrophyslcal Letters, 1, 99.Find this resource:

Layzer, D. and Hively, R. (1973). Origin of the microwave background…, Astrophysical Journal, 179, 361–70.Find this resource:

Le Roux, E. F. M. (1956). Mesures absolues en radio astronomie. Analyse des résultats obtenus sur la longueur d’onde de 33 cm. Etude de certains spectres. PhD thesis, Faculte des Sciences, Paris.Find this resource:

Leavitt, H. S. (1912). Periods of 25 variable stars in the Small Magellanic Cloud, Harvard College Observatory Circular, 173, 1–2.Find this resource:

Lebach, D. E., Corey, B. E., Shapiro, I. I., et al. (1995). Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry, Physical Review Letters, 75, 1439.Find this resource:

Lehners, J.-L. (2008). Ekpyrotic and cyclic cosmology, Physics Reports, 465, 223–63.Find this resource:

Lemaître, G. (1925a). Note on de Sitter’s universe, Journal of Mathematics and Physics, 4, 188–92.Find this resource:

Lemaître, G. (1925b). Note on de Sitter’s universe, Physical Review, 6, 903.Find this resource:

Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques (A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae), Annales de la Société Scientifique de Bruxelles, A47, 49–59. English translation: (1931), Monthly Notices of the Royal Astronomical Society, 91, 483–90.Find this resource:

Lemaître, G. (1931a). The beginning of the world from the point of view of quantum theory, Nature, 127, 706.Find this resource:

Lemaître, G. (1931b). The expanding universe, Monthly Notices of the Royal Astronomical Society, 91, 490–501.Find this resource:

Lemaître, G. (1931c). L’expansion de l’espace, Revue des Questions Scientifiques, 17, 391–410.Find this resource:

(p. 566) Lemaître, G. (1933). Spherical condensations in the expanding universe, Comptes Rendus de L’Academie des Sciences de Paris, 196, 903–4.Find this resource:

Lemaître, G. (1934). Evolution of the expanding universe, Proceedings of the National Academy of Sciences, 20, 12–17.Find this resource:

Lemaître, G. (1949). The cosmological constant, in Albert Einstein: Philosopher–Scientist, ed. Schilpp, P. A., pp. 437–56. Evanston IL: Library of Living Philosophers.Find this resource:

Lemaître, G. (1958). The primaeval atom hypothesis and the problem of the clusters of galaxies, in La Structure et l’Évolution de l’Univers: Rapports et Discussions. Institute International de Physique Solvay, Onzième Conseil de Physique, ed. Stoops, R., pp. 1–31. Bruxelles: Institute International de Physique Solvay.Find this resource:

Lemaître, G. (1997). The expanding universe, General Relativity and Gravitation, 29, 641–80.Find this resource:

Lepeltier, T. (2007). Quand l’univers était plus jeune que la terre, Archives Internationales d’Histoire des Sciences, 57, 137–56.Find this resource:

Lerner, E. J. (1991). The Big Bang Never Happened. London: Simon & Schuster.Find this resource:

Lerner, E. J. (1995). Intergalactic radio absorption and the COBE data, Astrophysics and Space Science, 227, 61–81.Find this resource:

Leslie, J. (1992). Doomsday revisited, The Philosophical Quarterly, 42, 85–9.Find this resource:

Leslie, J. (1996). The End of the World: The Ethics and Science of Human Extinction. London: Routledge.Find this resource:

Lévy-Leblond, J.-M. (1990). Did the Big Bang begin?, American Journal of Physics, 58, 156–9.Find this resource:

Lewis, D. (1986). On the Plurality of Worlds. Oxford: Blackwell.Find this resource:

Liddle, A. R. and Lyth, D. (2000). Cosmological Inflation and Large-Scale Structure. Cambridge: Cambridge University Press.Find this resource:

Lidsey, J. E., Liddle, A. R., Kolb, E. W., et al. (1997). Reconstructing the inflaton potential – an overview, Reviews of Modern Physics, 69, 373.Find this resource:

Lifshitz, E. (1946). On the gravitational stability of the expanding universe, Journal of Physics, Academy of Sciences of the USSR, 10, 116–29.Find this resource:

Lilly, S. J. and Cowie, L. L. (1987). Deep infrared surveys, in Infrared Astronomy with Arrays, ed. Wynn-Williams, C. G. and Becklin, E. E., pp. 473–82. Honolulu: Institute for Astronomy, University of Hawaii Publications.Find this resource:

Lin, C. C., Mestel, L., and Shu, F. (1965). The gravitational collapse of a uniform spheroid, Astrophysical Journal, 142, 1431–46.Find this resource:

Linde, A. D. (1974a). Is the cosmological constant really constant?, Pis’ma Zhurnal Eksperimentalnii i Teoreticheskhii Fizika, 19, 320–2.Find this resource:

Linde, A. D. (1974b). Is the Lee constant a cosmological constant?, Zhurnal Experimentalnoi i Teoretichseskikh Fizica (JETP) Letters, 19, 183–4.Find this resource:

Linde, A. D. (1982). A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters, 108B, 389–93.Find this resource:

Linde, A. D. (1983). Chaotic inflation, Physics Letters B, 129, 177–81.Find this resource:

Linde, A. D. (1986). Eternally existing self-reproducing chaotic inflationary universe, Physical Letters, B, 175, 395–400.Find this resource:

Linde, A. D. (2007). Sinks in the landscape, Boltzmann brains and the cosmological constant problem, Journal of Cosmology and Astroparticle Physics, 1, 022.Find this resource:

Linde, A. D. (2017). A brief history of the multiverse, Reports of Progress in Physics, 80, 022001.Find this resource:

Linde, A. D. and Vanchurin, V. (2010). How many universes are in the multiverse?, Physical Review D, 81, 083525.Find this resource:

(p. 567) Linde, A. D., Linde, D., and Mezhlumian, A. (1994). From the big bang theory to the theory of a stationary universe, Physical Review D, 49, 1783–826.Find this resource:

Lindquist, R. W. and Wheeler, J. A. (1957). Dynamics of a lattice universe by the Schwarzschild-cell method, Reviews of Modern Physics, 29, 432–43.Find this resource:

Lineweaver, C. H. (2005). Inflation and the cosmic microwave background, in The New Cosmology, ed. Colless, M., pp. 31–65. Singapore: World Scientific.Find this resource:

Lineweaver, C. H. and Egan, C. A. (2007). The cosmic coincidence as a temporal selection effect produced by the age distribution of terrestrial planets in the universe, The Astrophysical Journal, 671, 853–60.Find this resource:

Lineweaver, C. H., Davies, P. C., and Ruse, M. (2013). Complexity and the Arrow of Time. Cambridge: Cambridge University Press.Find this resource:

Linsky, J. L., Diplas, A., Savage, B., et al. (1994). Deuterium in the local interstellar medium: its cosmological significance, in Frontiers of Space and Ground-based Astronomy, 27th ESLAB Symposium, ed. W. Wamsteker, W., Longair, M. S., and Kondo, Y., pp. 301–04.Find this resource:

Livio, M. (2011). Lost in translation: mystery of the missing text solved, Nature, 479, 171–3.Find this resource:

Livio, M. and Rees, M. (2005). Anthropic reasoning, Science, 309, 1022–3.Find this resource:

Lloyd, S. (2000). Ultimate physical limits to computation, Nature, 406, 1047–54.Find this resource:

Lloyd, S. (2002). Computational capacity of the universe, Physical Review Letters, 88, 237901.Find this resource:

Longair, M. S. (1966a). Evidence on the evolutionary character of the universe derived from recent red-shift measurements, Nature, 211, 949–50.Find this resource:

Longair, M. S. (1966b). On the interpretation of radio source counts, Monthly Notices of the Royal Astronomical Society, 133, 421–36.Find this resource:

Longair, M. S. (1971). Observational cosmology, Reports of Progress in Physics, 34, 1125–248.Find this resource:

Longair, M. S. (Ed.) (1974). IAU Symposium 63. Confrontation of Cosmological Theories with Observational Data. Dordrecht: D. Reidel Publishing Company.Find this resource:

Longair, M. S. (1988). The new astrophysics, in The New Physics, ed. Davies, P. C., pp. 94–208. Cambridge: Cambridge University Press.Find this resource:

Longair, M. S. (1995). The physics of background radiation, in The Deep Universe: Saas-Fee Advanced Course 23. Lecture Notes 1993. Swiss Society for Astrophysics and Astronomy, ed. Binggeli, B. and Buser, R., p. 204. Berlin: Springer-Verlag.Find this resource:

Longair, M. S. (1997). The Friedman Robertson–Walker models: on bias, errors and acts of faith, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 285–308. Singapore: World Scientific.Find this resource:

Longair, M. S. (2003). Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics. Cambridge: Cambridge University Press.Find this resource:

Longair, M. S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge: Cambridge University Press.Find this resource:

Longair, M. S. (2008). Galaxy Formation, second edition. Berlin: Springer-Verlag.Find this resource:

Longair, M. S. (2011). High Energy Astrophysics, third edition. Cambridge: Cambridge University Press.Find this resource:

Longair, M. S. (2013). Quantum Concepts in Physics. Cambridge: Cambridge University Press.Find this resource:

Longair, M. S. and Scheuer, P. A. G. (1970). The luminosity–volume test for quasi-stellar objects, Monthly Notices of the Royal Astronomical Society, 151, 45.Find this resource:

Longair, M. S., Ryle, M., and Scheuer, P. A. G. (1973). Models of extended radio sources, Monthly Notices of the Royal Astronomical Society, 164, 253–70.Find this resource:

López-Corredoira, M. (2014). Non-standard models and the sociology of cosmology, Studies in History and Philosophy of Modern Physics, 46, 86–96.Find this resource:

(p. 568) López-Corredoira, M. (2017). Tests and problems of the standard model in cosmology, Foundations of Physics., 47, 711–68.Find this resource:

Louis, T., Grace, E., Hasselfield, M., et al. (2017). The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters, Journal of Cosmology and Astroparticle Physics, 6, 031.Find this resource:

Lovejoy, A. (1936). The Great Chain of Being. Cambridge, MA: Harvard University Press.Find this resource:

Lovelace, R. V. E. and Romanova, M. M. (2003). Relativistic Poynting jets from accretion disks, Astrophysical Journal, 596, L159–62.Find this resource:

Lubin, P., Villela, T., Epstein, G., et al. (1985). A map of the cosmic background radiation at 3 millimeters, Astrophysical Journal Letters, 298, L1–L5.Find this resource:

Lundmark, K. (1924). The determination of the curvature of space-time in de Sitter’s world, Monthly Notices of the Royal Astronomical Society, 84, 747–70.Find this resource:

Lundmark, K. (1925). The motions and the distances of spiral nebulae, Monthly Notices of the Royal Astronomical Society, 85, 865–94.Find this resource:

Lundmark, K. (1927). Studies of anagalactic nebulae, first paper, Meddelanden från Astronomiska Observatorium, Uppsala, Series C, i, No. 8, 50–3.Find this resource:

Lynden-Bell, D. (1967). Statistical mechanics of violent relaxation in stellar systems, Monthly Notices of the Royal Astronomical Society, 136, 101–21.Find this resource:

Lynden-Bell, D. (1969). Galactic nuclei as collapsed old quasars, Nature, 223, 690–4.Find this resource:

Lynden-Bell, D., Faber, S. M., Burstein, D., et al. (1988). Spectroscopy and photometry of elliptical galaxies, Astrophysical Journal, 326, 19–49.Find this resource:

Lyne, A. G. and Graham Smith, F. (1998). Pulsar Astronomy. Cambridge: Cambridge University Press.Find this resource:

Lyubimov, V. A., Novikov, E. G., Nozik, V. Z., et al. (1980). An estimate of the νe mass from the β-spectrum of tritium in the valine molecule, Physics Letters, 138, 30–56.Find this resource:

MacMillan, W. D. (1925). Some mathematical aspects of astronomy, Science, 62, 63–72, 96–9, 121–7.Find this resource:

Madau, P., Ferguson, H. C., Dickinson, M. E., et al. (1996). High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z ∼4, Monthly Notices of the Royal Astronomical Society, 283, 1388–404.Find this resource:

Maddox, S. J., Efstathiou, G., Sutherland, W. G., et al. (1990). Galaxy correlations on large scales, Monthly Notices of the Royal Astronomical Society, 242, 43P–7P.Find this resource:

Maeder, A. (1994). A selection of 10 most topical stellar problems, in Frontiers of Space and Ground-Based Astronomy, ed. Wamsteker, W., Longair, M. S., and Kondo, Y., pp. 177–86. Dordrecht: Kluwer Academic Publishers.Find this resource:

Magorrian, J., Tremaine, S., Richstone, D., et al. (1998). The demography of massive dark objects in galaxy centers, Astronomical Journal, 115, 2285–305.Find this resource:

Malament, D. (1977). Observationally indistinguishable space-times., in Foundation of Space-Time Theories, ed. Earman, J. S., Glymour, C. N., and Stachel, J. J., pp. 61–80. Minneapolis: University of Minnesota Press.Find this resource:

Malmquist, K. G. (1920). A study of stars of spectral type A, Meddelanden från Lunds Astronomiska Observatorium, Series II, 22, 1–69.Find this resource:

Manchak, J. (2009). Can we know the global structure of spacetime?, Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 40, 53–6.Find this resource:

Manchak, J. B. (2013). Global spacetime structure, in Oxford Handbook of Philosophy of Physics, ed. Batterman, R. W., pp. 587–606. Oxford: Oxford University Press.Find this resource:

Manly, S. (2011). Visions of the Multiverse. Pompton Plains, NJ: New Page Books.Find this resource:

(p. 569) Mann, M. (1962). The march of science – Big Bang up, steady-state down, Popular Science, 180, 29.Find this resource:

Manson, N. A. (2009). The fine-tuning argument, Philosophy Compass, 4, 271–86.Find this resource:

Manson, N. A. and Thrush, M. J. (2003). Fine-tuning, multiple universes, and the “This Universe” objection, Pacific Philosophical Quarterly, 84, 67–83.Find this resource:

Margon, B. and Ostriker, J. P. (1973). The luminosity function of galactic X-ray sources: a cut-off and a “Standard Candle”?, Astrophysical Journal, 186, 91–6.Find this resource:

Markarian, B. E. (1967). Galaxies with an ultraviolet continuum, Astrofizica, 3, 24–38.Find this resource:

Markarian, B. E., Lipovetsky, V. A., and Stepanian, D. A. (1981). Galaxies with ultraviolet continuum XV, Astrofizica, 17, 619–27. Translation: (1982), Astrophysics, 17, 321–32.Find this resource:

Martin, H. M., Partridge, R. B., and Rood, R. T. (1980). Interferometric limits on very small-scale fluctuations in the cosmic microwave background, Astrophysical Journal Letters, 240, L79–L82.Find this resource:

Martin, J., Ringeval, C., and Vennin, V. (2013). Encyclopaedia inflationaris. arXiv preprint arXiv:1303.3787.Find this resource:

Marx, G. and Szalay, A. S. (1972). Cosmological limit on neutretto mass, in Neutrino ’72, Volume 1, pp. 191–5. Budapest: Technoinform.Find this resource:

Marx, W. and Bornmann, L. (2010). How accurately does Thomas Kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology?, Scientometrics, 84, 441–64.Find this resource:

Mascall, E. L. (1956). Christian Theology and Natural Science. London: Longmans, Green and Co.Find this resource:

Mash, R. (1993). Big numbers and induction in the case for extraterrestrial intelligence, Philosophy of Science, 60, 204–22.Find this resource:

Mather, J. C. and Boslough, J. (1996). The Very First Light. New York: Basic Books.Find this resource:

Mather, J. C., Cheng, E. S., Eplee, J., et al. (1990). A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophysical Journal Letters, 354, L37–L40.Find this resource:

Matsumoto, T., Hayakawa, S., Matsuo, H., et al. (1988). The submillimeter spectrum of the cosmic background radiation, Astrophysical Journal, 329, 567–71.Find this resource:

Matt, G., Fabian, A. C., and Reynolds, C. S. (1997). Geometrical and chemical dependence of K-shell X-ray features, Monthly Notices of the Royal Astronomical Society, 289, 175–84.Find this resource:

Matthews, T. A. and Sandage, A. R. (1963). Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects, Astrophysical Journal, 138, 30–56.Find this resource:

Maudlin, T. (2007). The Metaphysics within Physics. Oxford: Oxford University Press.Find this resource:

Maunder, E. W. (1908). The Astronomy of the Bible. London: Epworth Press.Find this resource:

Mayer-Hasselwander, H. A., Kanbach, G., Bennett, K., et al. (1982). Large-scale distribution of galactic gamma radiation observed by COS-B, Astronomy and Astrophysics, 105, 164–75.Find this resource:

Maynard-Smith, J. and Szathmáry, E. (1996). On the likelihood of habitable worlds, Nature, 384, 107.Find this resource:

McAllister, L. and Silverstein, E. (2008). String cosmology: a review, General Relativity and Gravitation, 40, 565–605.Find this resource:

McCarthy, P. J. (2006). Galaxy formation and cosmology in the ELT era, in Scientific Requirements for Extremely Large Telescopes: IAU Symposium No.232, ed. Whitelock, P., Dennefeld, M., and Leibundgut, B., pp. 119–29. Cambridge: Cambridge University Press.Find this resource:

McConnell, C. S. (2002). Twentieth-century cosmologies, in Science and Religion: A Historical Introduction, ed. Ferngren, G. B. pp. 314–21. Baltimore: Johns Hopkins University Press.Find this resource:

McCoy, C. D. (2015). Does inflation solve the hot big bang model’s fine-tuning problems?, Studies in History and Philosophy of Modern Physics, 51, 23–36.Find this resource:

(p. 570) McCrea, W. H. (1935). Observable relations in relativistic cosmology, Zeitschrift für Astrophysik, 9, 290–314.Find this resource:

McCrea, W. H. (1950). The steady-state theory of the expanding universe, Endeavour, 9, 3–10.Find this resource:

McCrea, W. H. (1960). The interpretation of cosmology, Nature, 186, 1035.Find this resource:

McCrea, W. H. (1962). Information and prediction in cosmology, Monist, 47, 94–103.Find this resource:

McCrea, W. H. (1970). A philosophy for big bang cosmology, Nature, 228, 21–4.Find this resource:

McGrew, T., McGrew, L., and Vestrup, E. (2001). Probabilities and the fine-tuning argument: a sceptical view, Mind, 110, 1027–38.Find this resource:

McKellar, A. (1941). Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar spaces, Publications of the Dominion Astrophysical Observatory (Victoria), 7, 251–72.Find this resource:

McLeod, J. M. and Andrew, B. H. (1968). The radio source VRO 42.22.01, Astrophysical Letters, 1, 243.Find this resource:

McMullin, E. (1993). Indifference principle and anthropic principle in cosmology, Studies in the History and Philosophy of Science, 24, 359–89.Find this resource:

McNally, S. J. and Peacock, J. A. (1995). The small-scale clustering power spectrum and relativistic decays, Monthly Notices of the Royal Astronomical Society, 277, 143–51.Find this resource:

McVittie, G. C. (1965). General Relativity and Cosmology, second edition. International Astrophysics Series. London: Chapman and Hall.Find this resource:

Merkowitz, S. M. (2010). Tests of gravity using lunar laser ranging, Living Reviews in Relativity, 13, 7.Find this resource:

Merleau-Ponty, J. (1965). Cosmologie du XX Siècle. Paris: Gallimard.Find this resource:

Merleau-Ponty, J. (1983). La Science de l’Univers à l’âge du positivism. Paris: Vrin.Find this resource:

Merrill, P. W. (1933). Cosmic chemistry, Leaflet of the Astronomical Society of the Pacific, 2, 25–8.Find this resource:

Mersini-Houghton, L. (2006). Do we have evidence for new physics in the sky?, Modern Physics Letters A, 21, 1–21.Find this resource:

Mészáros, P. (1975). Primeval black holes and galaxy formation, Astronomy and Astrophysics, 38, 5–13.Find this resource:

Mészáros, P. and Rees, M. J. (1993). Gamma-ray bursts: multiwaveband spectral predictions for blast wave models, Astrophysical Journal, 418, L59–L62.Find this resource:

Metcalfe, N., Shanks, T., Campos, A., et al. (1996). Galaxy formation at high redshifts, Nature, 383, 236–7.Find this resource:

Meyer, D. M., Roth, K. C., and Hawkins, I. (1989). A precise CN measurement of the cosmic microwave background temperature at 1.32 millimeters, Astrophysical Journal Letters, 343, L1–L4.Find this resource:

Michell, J. (1767). An inquiry into the probable parallax, and magnitude of the fixed stars, from the quantity of light which they afford us, and the particular circumstances of their situation, Philosophical Transactions of the Royal Society, 57, 234–64.Find this resource:

Mihos, J. C. and Hernquist, L. (1994). Triggering of starbursts in galaxies by minor mergers, Astrophysical Journal, 425, L13–L16.Find this resource:

Mihos, J. C. and Hernquist, L. (1996). Gasdynamics and starbursts in major mergers, Astrophysical Journal, 464, 641–63.Find this resource:

Millea, M. F., McColl, M., Pedersen, R. J., et al. (1971). Cosmic background radiation at λ = 3.3 mm, Physical Review Letters, 26, 919–22.Find this resource:

Miller, R. H., Prendergast, K. H., and Quirk, W. J. (1970). Numerical experiments on spiral structure, Astrophysical Journal, 161, 903–16.Find this resource:

(p. 571) Mills, B. Y. and Slee, O. B. (1957). A preliminary survey of radio sources in a limited region of the sky at a wavelength of 3.5 m, Australian Journal of Physics, 10, 162–94.Find this resource:

Milne, E. A. (1933). World-structure and the expansion of the universe, Zeitschrift für Astrophysik, 6, 1–96.Find this resource:

Milne, E. A. (1935). Relativity, Gravitation and World-Structure. Oxford: Clarendon Press.Find this resource:

Milne, E. A. (1937). On the origin of laws of nature, Nature, 139, 997–9.Find this resource:

Milne, E. A. (1938). On the equations of electromagnetism, Proceedings of the Royal Society of London A, 165, 313–57.Find this resource:

Milne, E. A. (1952). Modern Cosmology and the Christian Idea of God. New York: Oxford University Press.Find this resource:

Minkowski, R. (1941). Spectra of supernovae, Publications of the Astronomical Society of the Pacific, 53, 224–5.Find this resource:

Minkowski, R. (1960). A new distant cluster of galaxies, Astrophysical Journal, 132, 908.Find this resource:

Mirabel, I. F. and Rodrigues, L. F. (1994). A superluminal source in the galaxy, Nature, 371, 46–8.Find this resource:

Mirabel, I. F. and Rodrigues, L. F. (1998). Microquasars in our galaxy, Nature, 392, 673–6.Find this resource:

Misner, C. W. (1968). The isotropy of the universe, Astrophysical Journal, 151, 431–57.Find this resource:

Misner, C. W. (1969). Mixmaster universe, Physical Review Letters, 22, 1071–4.Find this resource:

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. San Francisco: W.H. Freeman and Co.Find this resource:

Mitchell, J. L., Keeton, C. R., Frieman, J. A., et al. (2005). Improved cosmological constraints from gravitational lens statistics, Astrophysical Journal, 622, 81–98.Find this resource:

Miyoshi, M., Moran, J., Herrnstein, J., et al. (1995). Evidence for a black-hole from high rotation velocities in a sub-parsec region of NGC4258, Nature, 373, 127–9.Find this resource:

Moffat, J. W. (2011). Taking the multiverse on faith, Physics World, 24, 46–7.Find this resource:

Moffat, J. W. (2014). Inflationary schism, Physics Letters B, 736, 142–6.Find this resource:

Monaco, P. (1998). The cosmological mass function, Fundamentals of Cosmic Physics, 19, 157–317.Find this resource:

Monaco, P. (1999). Dynamics in the cosmological mass function (or, why does the Press & Schechter work?), in Observational Cosmology: The Development of Galaxy Systems, ed. Giuricin, G., Mezzetti, M., and Salucci, P., pp. 186–97. San Francisco: Astronomical Society of the Pacific Conference Series No. 176.Find this resource:

Moorcock, M. (1995). The Eternal Champion. Clarkston, GA: White Wolf.Find this resource:

Moroz, V. I. (2001). Spectra and spacecraft, Planetary and Space Science, 49, 173–90.Find this resource:

Mortonson, M. J. and Seljak, U. (2014). A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, Journal of Cosmology and Astroparticle Physics, 10, 035.Find this resource:

Moschella, U. (2006). The de Sitter and anti-de Sitter sightseeing tour, in Einstein 1905–2005: Poincaré Seminar 2005, ed. Damour, T. et al., pp. 120–33. Basel: Birkhäuser Verlag.Find this resource:

Moulton, F. R. (1905). On the evolution of the solar system, Astrophysical Journal, 22, 165–81.Find this resource:

Muehlner, D. and Weiss, R. (1970). Measurement of the isotropic background radiation in the far infrared, Physical Review Letters, 24, 742–6.Find this resource:

Mukhanov, V. F. (2005). Physical Foundations of Cosmology. Cambridge: Cambridge University Press.Find this resource:

Mukhanov, V. F. and Chibisov, G. V. (1981). Quantum fluctuations and a nonsingular universe, JETP Letters, 33, 532–5.Find this resource:

Munitz, M. K. (1952). Scientific method in cosmology, Philosophy of Science, 19, 108–30.Find this resource:

Munitz, M. K. (1962). The logic of cosmology, British Journal for the Philosophy of Science, 13, 34–50.Find this resource:

Murphy, M. T. et al. (2001). Possible evidence for a variable fine-structure constant from QSO absorption lines, Monthly Notices of the Royal Astronomical Society, 327, 1208–22.Find this resource:

(p. 572) Murphy, T., Adelberger, E. G., Battat, J. B. R., et al. (2011). Laser ranging to the lost Lunokhod, Icarus, 211, 1103–8.Find this resource:

Myers, S. T., Baker, J. E., Readhead, A. C. S., et al. (1997). Measurements of the Sunyaev–Zeldovich effect in the nearby clusters A478, A2142, and A2256, Astrophysical Journal, 485, 1–21.Find this resource:

Narlikar, J. V. and Wickramasinghe, N. C. (1967). Microwave background in a steady-state universe, Nature, 216, 43–4.Find this resource:

Naselsky, P. D., Novikov, D. I., and Novikov, I. D. (2006). The Physics of the Cosmic Microwave Background. Cambridge: Cambridge University Press.Find this resource:

Nasim, O. (2014). Observing by Hand: Sketching the Nebulae in the Nineteenth Century. Chicago, University of Chicago Press.Find this resource:

Nath, B. B. (2013). The Story of Helium and the Birth of Astrophysics. New York: Springer.Find this resource:

Nazaretyan, A. P. (2005). Big (universal) history paradigm: versions and approaches, Social Evolution and History, 4, 61–86.Find this resource:

Neal, R. M. (2006). Puzzles of anthropic reasoning resolved using full non-indexical conditioning. arXiv preprint math/0608592.Find this resource:

Negroponte, J. and Silk, J. (1980). Polarization of the primeval radiation in an anisotropic universe, Physical Review Letters, 44, 1433–7.Find this resource:

Newcomb, S. (1898). The philosophy of hyper-space, Science, 7, 1–7.Find this resource:

Newcomb, S. (1906). Side-Lights on Astronomy: Essays and Addresses. New York: Harper and Brothers.Find this resource:

Newman, E. T., Couch, K., Chinnapared, K., et al. (1965). Metric of a rotating charged mass, Journal of Mathematical Physics, 6, 918–9.Find this resource:

Neyman, J., Scott, E. L., and Shane, C. D. (1954). The index of clumpiness of the distribution of images of galaxies, Astrophysical Journal Supplement, 1, 269–93.Find this resource:

Nichol, J. P. (1848). Thoughts on Some Important Points Relating to the System of the World, second edition. Edinburgh: Johnstone.Find this resource:

Nicholson, J. W. (1913). The physical interpretation of the spectrum of the corona, Observatory, 36, 103–12.Find this resource:

Nomura, Y. (2015). A note on Boltzmann brains, Physics Letters B, 749, 514–18.Find this resource:

Norberg, P., Baugh, C. M., Hawkins, E., et al. (2001). The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering, Monthly Notices of the Royal Astronomical Society, 328, 64–70.Find this resource:

Norberg, P., Baugh, C. M., Hawkins, E., et al. (2002). The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type, Monthly Notices of the Royal Astronomical Society, 332, 827–38.Find this resource:

Nordtvedt, K. (1991). Lunar laser ranging reexamined: the non-null relativistic contribution, Physical Review D, 43, 3131.Find this resource:

Nordtvedt, K. (1998). Optimizing the observation schedule for tests of gravity in lunar laser ranging and similar experiments, Classical and Quantum Gravity, 15, 3363.Find this resource:

Nordtvedt, K., Jr. (1968). Testing relativity with laser ranging to the moon, Physical Review, 170, 1186.Find this resource:

North, J. D. (1965). The Measure of the Universe: A History of Modern Cosmology. Oxford: Oxford University Press.Find this resource:

North, J. D. (1990). The Measure of the Universe: A History of Cosmology, new edition. New York: Dover Publications.Find this resource:

North, J. D. (2008). Cosmos: An Illustrated History of Astronomy and Cosmology. Chicago: University of Chicago Press.Find this resource:

(p. 573) Norton, J. D. (1999). The cosmological woes of Newtonian gravitation theory, in The Expanding Worlds of General Relativity, ed. Goenner, H., et al., pp. 271–324. Boston: Birkhäuser.Find this resource:

Norton, J. D. (2000). How we know about electrons, in After Popper, Kuhn and Feyerabend: Recent Issues in Theories of Scientific Method, ed. Nola, R. and Sankey, H., pp. 67–97. Dordrecht: Kluwer Academic Publishers.Find this resource:

Norton, J. D. (2010). Cosmic confusions: not supporting versus supporting not, Philosophy of Science, 77, 501–23.Find this resource:

Norton, J. D. (2011). Observationally indistinguishable spacetimes: a challenge for any inductivist, in Philosophy of Science Matters: The Philosophy of Peter Achinstein, ed. Morgan, G. J., pp. 164–6. Oxford: Oxford University Press.Find this resource:

Noterdaeme, P., Petitjean, P., Srianand, R., et al. (2011). The evolution of the cosmic microwave background temperature. Measurements of TCMB at high redshift from carbon monoxide excitation, Astronomy and Astrophysics, 526, L7.Find this resource:

Novikov, I. D. (1964). On the possibility of appearance of large scale inhomogeneities in the expanding universe, Journal of Experimental and Theoretical Physics, 46, 686–9.Find this resource:

Novikov, I. D. (1968). Expected anisotropy of cosmological radio emission in homogeneous anisotropic models, Soviet Astronomy, 12, 427–8.Find this resource:

Nowotny, H. and Rose, H. (1979). Counter-Movements in the Sciences. Dordrecht: Reidel.Find this resource:

Nussbaumer, H. and Bieri, L. (2009). Discovering the Expanding Universe. Cambridge: Cambridge University Press.Find this resource:

O’Connell, D. (Ed.) (1958). Semaine d’ Etude sur le Probleme des Populations Stellaires. Vatican City: Pontificia Academia Scientiarum.Find this resource:

Oda, M., Gorenstein, P., Gursky, H., et al. (1971). X-Ray pulsations from Cygnus X-1 observed from UHURU, Astrophysical Journal, 166, L1–L7.Find this resource:

O’Dell, C. R., Peimbert, M., and Kinman, T. D. (1964). The planetary nebulae in the globular cluster M15, Astrophysical Journal, 140, 119–29.Find this resource:

Ogilvie, M. (1975). John Herschel’s cosmology: Robert Chambers and the nebular hypothesis, British Journal for the History of Science, 30, 214–32.Find this resource:

Ohm, E. A. (1961). Project Echo receiving system, Bell System Technology Journal, 40, 1065–94.Find this resource:

Olbers, H. W. (1826). Ueber die Durchsichtigkeit des Weltraums, Berliner Astronomisches Jahrbuch, 51, 110–21.Find this resource:

Olive, K. A. (1990). Inflation, Physics Reports, 190, 307–403.Find this resource:

Oliver, S. J., Rowan-Robinson, M., and Saunders, W. (1992). Infrared background constraints on the evolution of IRAS galaxies, Monthly Notices of the Royal Astronomical Society, 256, 15P–22P.Find this resource:

Olson, S. J. (2015). Homogeneous cosmology with aggressively expanding civilizations, Classical and Quantum Gravity, 32, 215025.Find this resource:

Olum, K. (2004). Conflict between anthropic reasoning and observation, Analysis, 64, 1–8.Find this resource:

Omnès, R. (1969). Possibility of matter–antimatter separation at high temperatures, Physical Review Letters, 23, 38–40.Find this resource:

Oort, J. H. (1932). The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, Bulletin of the Astronomical Institutes of the Netherlands, 6, 249–87.Find this resource:

Oort, J. H. (1958). Distribution of galaxies and density in the universe, in Solvay Conference on The Structure and Evolution of the Universe, pp. 163–81. Brussels: Institut International de Physique Solvay.Find this resource:

(p. 574) Opal Collaboration (1990). A combined analysis of the hadronic and leptonic decays of the Z0, Physics Letters, B240, 497–512.Find this resource:

Oppenheimer, J. R. and Volkoff, G. M. (1939). On massive neutron cores, Physical Review, 55, 374–81.Find this resource:

Oppy, G. (2001). Physical eschatology, Philo, 4, 148–68.Find this resource:

O’Raifeartaigh, C. and McCann, B. (2014). Einstein’s cosmic model of 1931 revisited: an analysis and translation of a forgotten model of the universe, European Physical Journal H, 39, 63–85.Find this resource:

O’Raifeartaigh, C., McCann, B., Nahm, W., et al. (2014). Einstein’s steady-state theory: an abandoned model of the cosmos, European Physical Journal H, 39, 353–67.Find this resource:

O’Raifeartaigh, C., O’Keeffe, M., Nahm, W., et al. (2017). Einstein’s 1917 static model of the universe: a centennial review, European Physical Journal H, 42, 431–74.Find this resource:

Orosz, J. A. (2007). Home-pages of Jerome A. Orosz. http://mintaka.sdsu.edu/faculty/orosz/web/.

Orosz, J. A., McClintock, J. E., Narayan, R., et al. (2007). A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33, Nature, 449, 872–5.Find this resource:

Ørsted, H. C. (1998). Selected Scientific Works of Hans Christian Ørsted, ed. K. Jelved, A. Jackson, and O. Knudsen. Princeton: Princeton University Press.Find this resource:

Osmer, P. S. (1982). Evidence for a decrease in the space density of quasars at z ≥3.5, Astrophysical Journal, 253, 28–37.Find this resource:

Osterbrock, D. E. (1984). James E. Keeler: Pioneer American Astrophysicist and the Early Development of American Astrophysics. Cambridge: Cambridge University Press.Find this resource:

Osterbrock, D. E. (1991). The observational approach to cosmology: U.S. observatories pre-World War II, in Modern Cosmology in Retrospect, ed. Bertotti, B. et al., pp. 247–90. Cambridge: Cambridge University Press.Find this resource:

Osterbrock, D. E. (2001). Walter Baade: A Life in Astrophysics. Princeton: Princeton University Press.Find this resource:

Osterbrock, D. E. and Rogerson, J. B. (1961). The helium and heavy-element content of gaseous nebulae and the Sun, Publications of the Astronomical Society of the Pacific, 73, 129–34.Find this resource:

Ostriker, J. P. and Cowie, L. L. (1981). Galaxy formation in an intergalactic medium dominated by explosions, Astrophysical Journal, 243, L127–31.Find this resource:

Ostriker, J. P. and Peebles, P. J. E. (1973). A numerical study of the stability of flattened galaxies: or, can cold galaxies survive?, Astrophyiscal Journal, 186, 467–80.Find this resource:

Ostriker, J. P. and Steinhardt, P. J. (1995). The observational case for a low-density Universe with a non-zero cosmological constant, Nature, 377, 600–2.Find this resource:

Oswalt, T. D., Smith, J. A., Wood, M. A., et al. (1996). A lower limit of 9.5 Gyr on the age of the galactic disk from the oldest white dwarf stars, Nature, 382, 692–4.Find this resource:

Pachner, J. (1965). An oscillating isotropic universe without singularity, Monthly Notices of the Royal Astronomical Society, 131, 173–6.Find this resource:

Pacini, F. (1967). Energy emission from a neutron star, Nature, 216, 567–8.Find this resource:

Page, D. N. (2006). The lifetime of the universe, Journal of the Korean Physical Society, 49, 711–14.Find this resource:

Page, D. N. (2008a). Return of the Boltzmann brains, Physical Review D, 78, 063536.Find this resource:

Page, D. N. (2008b). Typicality derived, Physical Review D, 78, 023514.Find this resource:

Pagels, H. R. (1998). A cozy cosmology, in Modern Cosmology and Philosophy, ed. Leslie, J., pp. 180–6. Amherst: Prometheus Books.Find this resource:

Panagia, N., Gilmozzi, R., Macchetto, F., et al. (1991). Properties of the SN 1987A circumstellar ring and the distance to the Large Magellanic Cloud, Astrophysical Journal, 380, L23–6.Find this resource:

(p. 575) Pariiskii, Y. N. (1968). On the origin of the blackbody radiation of the universe, Soviet Astronomy, 12, 219–24.Find this resource:

Pariiskii, Y. N. (1973). Detection of hot gas in the Coma cluster of galaxies., Soviet Astronomy, 16, 1048.Find this resource:

Partridge, R. B. (1969). The primeval fireball today, American Scientist, 57(1), 37–74.Find this resource:

Partridge, R. B. (1980a). Flucutations in the cosmic microwave background radiation at small angular scales, Physica Scripta, 21, 624–9.Find this resource:

Partridge, R. B. (1980b). New limits on small-scale angular fluctuations in the cosmic microwave background, Astrophysical Journal, 235, 681–7.Find this resource:

Partridge, R. B. (1995). 3K: The Cosmic Microwave Background Radiation. Cambridge: Cambridge University Press.Find this resource:

Partridge, R. B. and Wilkinson, D. T. (1967). Isotropy and homogeneity of the universe from measurements of the cosmic microwave background, Physical Review Letters, 18, 557–9.Find this resource:

Partridge, R. B., Cannon, J., Foster, R., et al. (1984). Automated measurement of the temperature of the atmosphere at 3.2 cm, Physical Review D, 29, 2683–5.Find this resource:

Paul, E. R. (1993). The Milky Way and Statistical Cosmology 1890–1924. New York: Cambridge University Press.Find this resource:

Pauli, W. (1996). Letter to A. Jaffé, 3 December 1951, in Wissenschaftlicher Briefwechsel, vol. 4, part 1, ed. von Meyenn, K. Berlin: Springer.Find this resource:

Pauri, M. (1991). The universe as a scientific object, in Philosophy and the Origin and Evolution of the Universe, ed. Agazzi, E. and Cordero, A., pp. 291–339. Dordrecht: Kluwer Academic Publishers.Find this resource:

Peacock, J. A. (2000). Cosmological Physics. Cambridge: Cambridge University Press.Find this resource:

Peacock, J. A. and Dodds, S. J. (1994). Reconstructing the linear power spectrum of cosmological mass fluctuations, Monthly Notices of the Royal Astronomical Society, 267, 1020–34.Find this resource:

Peacock, J. A. and Heavens, A. F. (1985). The statistics of maxima in primordial density perturbations, Monthly Notices of the Royal Astronomical Society, 217, 805–20.Find this resource:

Peacock, J. A., Cole, S., Norberg, P., et al. (2001). A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey, Nature, 410, 169–73.Find this resource:

Pearce, J. (2017). The unfolding of the historical style in modern cosmology: emergence, evolution, entrenchment, Studies in History and Philosophy of Modern Physics, 57, 17–34.Find this resource:

Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1981). Superluminal expansion of quasar 3C273, Nature, 290, 365–8.Find this resource:

Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1982). Superluminal expansion of 3C273, in Extragalactic Radio Sources, ed. Heeschen, D. S. and Wade, C. M., pp. 355–6. Dordrecht: D. Reidel Publishing Company.Find this resource:

Peebles, P. J. E. (1966). Primeval helium abundance and the primeval fireball, Physical Review Letters, 16, 410–13.Find this resource:

Peebles, P. J. E. (1968). Recombination of the primeval plasma, Astrophysical Journal, 153, 1–11.Find this resource:

Peebles, P. J. E. (1971a). Physical Cosmology. Princeton, NJ: Princeton University Press.Find this resource:

Peebles, P. J. E. (1971b). Two old cosmological tests, Comments on Astrophysics and Space Physics, 3, 173–7.Find this resource:

Peebles, P. J. E. (1976). A cosmic virial theorem, Astrophysics and Space Science, 45, 3–19.Find this resource:

Peebles, P. J. E. (1980). The Large-Scale Structure of the Universe. Princeton: Princeton University Press.Find this resource:

Peebles, P. J. E. (1982). Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations, Astrophysical Journal, 263, L1–L5.Find this resource:

(p. 576) Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton: Princeton University Press.Find this resource:

Peebles, P. J. E. (2005). Probing general relativity on the scales of cosmology, in General Relativity and Gravitation: Proceedings of the 17th International Conference. Held 18–23 July 2004 in Dublin, ed. Florides, P., Nolan, B., and Ottewill, A., pp. 106–17. Singapore: World Scientific.Find this resource:

Peebles, P. J. E. (2014). Discovery of the hot big bang: what happened in 1948, European Physical Journal H, 39, 205–24.Find this resource:

Peebles, P. J. E. (2017). Robert Dicke and the naissance of experimental gravity physics, 1957–1967, European Physical Journal H, 42, 177–260.Find this resource:

Peebles, P. J. E. and Wilkinson, D. T. (1968). Comment on the anisotropy of the primeval fireball, Physical Review, 174, 2168.Find this resource:

Peebles, P. J. E. and Yu, J. T. (1970). Primeval adiabatic perturbation in an expanding universe, Astrophysical Journal, 162, 815.Find this resource:

Peebles, P. J. E., Page, L. A., and Partridge, R. B. (2009). Finding the Big Bang. Cambridge: Cambridge University Press.Find this resource:

Penrose, R. (1965). Gravitational collapse and space-time singularities, Physical Review Letters, 14, 57–9.Find this resource:

Penrose, R. (1969). Gravitational collapse: the role of general relativity, Rivista Nuovo Cimento, 1, 252–76.Find this resource:

Penrose, R. (1979). Singularities and time-asymmetry, in General Relativity: An Einstein Centenary Survey, ed. Hawking, S. W. and Israel, W., pp. 581–638. Cambridge: Cambridge University Press.Find this resource:

Penrose, R. (2016). Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton: Princeton University Press.Find this resource:

Penzias, A. A. (1979). The origin of the elements, Reviews of Modern Physics, 51, 425–32.Find this resource:

Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 MHz, Astrophysical Journal, 142, 419–21.Find this resource:

Penzias, A. A. and Wilson, R. W. (1967). A measurement of the background temperature at 1415 MHz, Astronomical Journal, 72, 315.Find this resource:

Peratt, A. L. (1995). Introduction to plasma astrophysics and cosmology, Astrophysics and Space Science, 227, 3–11.Find this resource:

Perley, R. A., Dreher, J. W., and Cowan, J. J. (1984). The jet and filaments in Cygnus A, Astrophysical Journal, 285, L35–8.Find this resource:

Perlmutter, S., Aldering, G., della Valle, M., et al. (1998). Discovery of a supernova explosion at half the age of the universe, Nature, 391, 51–4.Find this resource:

Perlmutter, S., Boyle, B., Bunclark, P., et al. (1996). High-redshift supernova discoveries on demand: first results from a new tool for cosmology and bounds on q0, Nuclear Physics B, 51, 20–9.Find this resource:

Perlmutter, S., Gabi, S., Goldhaber, G., et al. (1997). Measurements of the cosmological parameters Omega and Lambda from the first seven supernovae at z > 0.35, Astrophysical Journal, 483, 565–81.Find this resource:

Perlmutter, S., Aldering, G., Goldhaber, G. et al. (1999). Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophysical Journal, 517, 565–86.Find this resource:

Perrin, J. (1923). Atoms. New York: Van Nostrand. Translated by D. L. Hammick.Find this resource:

Peruzzi, G. and Realdi, M. (2011). The quest for the size of the universe in early relativistic cosmology, Archive for History of Exact Sciences, 65, 659–89.Find this resource:

Peterson, J. B., Richards, P. L., and Timusk, T. (1985). Spectrum of the cosmic background radiation at millimeter wavelengths, Physical Review Letters, 55, 332–5.Find this resource:

(p. 577) Pickering, E. (1912). Harvard College Observatory Circular, No. 173: Periods of 25 Variable Stars in the Small Magellanic Clouds. Cambridge, MA: Harvard College Observatory.Find this resource:

Piel, G. et al. (Eds.) (1956). Cosmology and Science. New York: Simon and Schuster.Find this resource:

Pilkington, J. D. H. and Scott, P. F. (1965). A survey of radio sources between declinations 20 and 40, Monthly Notices of the Royal Astronomical Society, 69, 183–224.Find this resource:

Pinch, T. (1985). Towards an analysis of scientific observation: The externality and evidential significance of observational reports in physics, Social Studies of Science, 15, 3–36.Find this resource:

Planck Collaboration (2014). Planck 2013 results. XVI. Cosmological parameters, Astronomy and Astrophysics, 571, A16.Find this resource:

Planck Collaboration (2016a). Planck 2015 results. I. Overview of products and scientific results, Astronomy and Astrophysics, 594, A1.Find this resource:

Planck Collaboration (2016b). Planck 2015 results. XIII. Cosmological parameters, Astronomy and Astrophysics, 594, A13.Find this resource:

Planck Collaboration (2016c). Planck 2015 results. XV. Gravitational lensing, Astronomy and Astrophysics, 594, A15.Find this resource:

Planck Collaboration (2016d). Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astronomy and Astrophysics, 594, A17.Find this resource:

Planck Collaboration (2016e). Planck 2015 results. XX. Constraints on inflation, Astronomy and Astrophysics, 594, A20.Find this resource:

Planck Collaboration (2016f). Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, Astronomy and Astrophysics, 596, A107.Find this resource:

Pochoda, P. and Schwarzschild, M. (1964). Variation of the cosmological constant and the evolution of the sun, Astrophysical Journal, 139, 587–93.Find this resource:

Poincaré, H. (1911). Leçons sur les Hypothèses Cosmogoniques. Paris: Hermann et fils.Find this resource:

Polanyi, M. (1967). The growth of science in society, Minerva, 5, 533–45.Find this resource:

POLARBEAR Collaboration, Ade, P. A. R., Aguilar, M., et al. (2017). A measurement of the cosmic microwave background B-mode polarization power spectrum at subdegree scales from two years of Polarbear data, Astrophysical Journal, 848, 121.Find this resource:

Polites, M. E. (1998). An assessment of the technology of automated rendezvous and capture in space. NASA Technical Report NASA/TP-1998-208528, M-877, NAS 1.60:208528.Find this resource:

Popper, K. R. (1959). The Logic of Scientific Discovery. London: Hutchinson and Co.Find this resource:

Porpora, D. V. (2013). How many thoughts are there? Or why we likely have no Tegmark duplicates 1010115 m away, Philosophical Studies, 163, 133–49.Find this resource:

Pozdnyakov, L. A., Sobol, I. M., and Sunyaev, R. A. (1983). Comptonization and the shaping of X-ray source spectra: Monte Carlo calculations, Astrophysics and Space Science Reviews, 2, 189–331.Find this resource:

Prendergast, K. H. and Burbidge, G. R. (1968). On the nature of some galactic X-ray sources, Astrophysical Journal, 151, L83–8.Find this resource:

Press, W. H. and Schechter, P. (1974). Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, Astrophysical Journal, 187, 425–38.Find this resource:

Price, H. (1996). Time’s Arrow and Archimedes’ Point. Oxford: Oxford University Press.Find this resource:

Price, H. (2004). On the origins of the arrow of time: Why there is still a puzzle about the low entropy past, in Contemporary Debates in the Philosophy of Science, ed. Hitchcock, C., pp. 219–39. Oxford: Blackwell Publishing.Find this resource:

Price, M. E. (2017). Entropy and selection: life as an adaptation for universe replication. Complexity 2017, 4745379.Find this resource:

(p. 578) Proctor, R. (1869a). Distribution of the nebulae, Monthly Notices of the Royal Astronomical Society, 39, 337–44.Find this resource:

Proctor, R. A. (1869b). A new theory of the universe, The Student and Intellectual Observer, 3, 1–10, 110–19, 177–89.Find this resource:

Proctor, R. A. (1896). Other Worlds than Ours. New York: Appleton.Find this resource:

Rappaport, S., Doxsey, R., and Zaumen, W. (1971). A search for X-ray pulsations from Cygnus X-1, Astrophysical Journal, 168, L43–7.Find this resource:

Rappaport, S. A. and Joss, P. C. (1983). X-ray pulsars in massive binary systems, in Accretion Driven Stellar X-ray Sources, ed. Lewin, W. H. G. and van den Heuvel, E. P. J., pp. 1–39. Cambridge: Cambridge University Press.Find this resource:

Readhead, A. C. S., Lawrence, C. R., Myers, S. T., et al. (1989). A limit on the anisotropy of the microwave background radiation on arc minute scales, Astrophysical Journal, 346, 566–87.Find this resource:

Realdi, M. and Peruzzi, G. (2009). Einstein, de Sitter and the beginning of relativistic cosmology in 1917, General Relativity and Gravitation, 41, 225–47.Find this resource:

Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E., et al. (1979). Viking relativity experiment – verification of signal retardation by solar gravity, Astrophysical Journal, 234, L219–21.Find this resource:

Reber, G. (1940). Cosmic static, Astrophysical Journal, 91, 621–4.Find this resource:

Reber, G. (1944). Cosmic static, Astrophysical Journal, 100, 279–87.Find this resource:

Rees, M. J. (1966). Appearance of relativistically expanding radio sources, Nature, 211, 468–70.Find this resource:

Rees, M. J. (1967). Studies in radio source structure – I. A relativistically expanding model for variable quasi-stellar radio sources, Monthly Notices of the Royal Astronomical Society, 135, 345–60.Find this resource:

Rees, M. J. (1968). Polarization and spectrum of the primeval radiation in an anisotropic universe, Astrophysical Journal Letters, 153, L1–L5.Find this resource:

Rees, M. J. (1969). The collapse of the universe: an eschatological study, Observatory, 89, 193–8.Find this resource:

Rees, M. J. (1971). New interpretation of extragalactic radio sources, Nature, 229, 312–17.Find this resource:

Rees, M. J. (1976). Beam models for double sources and the nature of the primary energy source, in The Physics of Non-thermal Radio Sources, ed. Setti, G., pp. 107–20. Dordrecht: D. Reidel Publishing Company.Find this resource:

Rees, M. J. (1984). Black hole models for active galactic nuclei, Annual Review of Astronomy and Astrophysics, 22, 471–506.Find this resource:

Rees, M. J. (1997). Before the Beginning: Our Universe and Others. Cambridge, MA: Helix.Find this resource:

Rees, M. J. (2001). Our Cosmic Habitat. (Princeton: Princeton University Press).Find this resource: