Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 15 August 2020

Abstract and Keywords

This article examines Henri Poincaré’s philosophical conceptions of generality in mathematics and physics, and more specifically his claim that induction in experimental physics does not consist in extending the domain of a predicate. It first considers Poincaré’s view that generalization is not a means to reach generality and that the issue of infinity is related to the theme of generality. It then shows how generality in mathematics and physics is construed by Poincaré in a very specific way and how he analyzes empirical induction in physics. It also analyzes the distinction suggested by Poincaré between generalizations used in mathematical physics and generalizations used by ‘naturalists’. In particular, it explains the distinction between mathematical generality and the so-called predicative generality. Finally, it compares Poincaré’s concern regarding empirical induction with Nelson Goodman’s ‘new riddle of induction’, arguing that ‘the new riddle of induction’ was originally formulated by Poincaré half a century earlier.

Keywords: Henri Poincaré, generality, mathematics, physics, predicate, generalization, infinity, empirical induction, Nelson Goodman, new riddle of induction

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.