Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 03 August 2020

Abstract and Keywords

This article examines Ernst Kummer’s creation of ideal factors, which provides an interesting example of generalization within the set of complex numbers. Kummer developed a theory of ideal numbers in order to generalize arithmetical properties of natural numbers by extending these properties to certain complex numbers. His goal was to make complex numbers analogous to natural ones. This article first considers Kummer’s use of several analogies, primarily with arithmetic and chemistry, to come up with ideal factors of complex numbers. It then situates Kummer’s investigations on complex numbers with respect to Carl Friedrich Gauss’s work and compares his theory of ideal factors with Richard Dedekind’s ideals theory. It shows that Kummer’s method of generalization is premised on the distinction he articulated between ‘permanent’ and ‘accidental’ properties of complex numbers. This distinction draws from Kummer’s conception of mathematics, which was essentially different from those espoused by Gauss and Dedekind.

Keywords: Ernst Kummer, ideal factors, generalization, complex numbers, arithmetic, Carl Friedrich Gauss, Richard Dedekind, ideals theory, mathematics, ideal numbers

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.