Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 18 September 2019

Abstract and Keywords

This article deals with the universality of eigenvalue spacings, one of the basic characteristics of random matrices. It first discusses the heuristic meaning of universality before describing the standard universality classes (sine, Airy, Bessel) and their appearance in unitary, orthogonal, and symplectic ensembles. It then examines unitary matrix ensembles in more detail and shows that universality in these ensembles comes down to the convergence of the properly scaled eigenvalue correlation kernels. It also analyses the Riemann–Hilbert method, along with certain non-standard universality classes that arise at singular points in the limiting spectrum. Finally, it considers the limiting kernels for each of the three types of singular points, namely interior singular points, singular edge points, and exterior singular points.

Keywords: universality, eigenvalue spacing, unitary ensemble, orthogonal ensemble, symplectic ensemble, eigenvalue correlation kernel, Riemann-Hilbert method, interior singular point, singular edge point, exterior singular point

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.