- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index

## Abstract and Keywords

This article describes a direct approach for computing scalar and matrix kernels, respectively for the unitary ensembles on the one hand and the orthogonal and symplectic ensembles on the other hand, leading to correlation functions and gap probabilities. In the classical orthogonal polynomials (Hermite, Laguerre, and Jacobi), the matrix kernels for the orthogonal and symplectic ensemble are expressed in terms of the scalar kernel for the unitary case, using the relation between the classical orthogonal polynomials going with the unitary ensembles and the skew-orthogonal polynomials going with the orthogonal and symplectic ensembles. The article states the fundamental theorem relating the orthonormal and skew-orthonormal polynomials that enter into the Christoffel-Darboux kernels

Keywords: scalar kernel, matrix kernel, unitary ensemble, orthogonal ensemble, symplectic ensemble, orthogonal polynomial, skew-orthogonal polynomial, Christoffel-Darboux kernel

Mark Adler, Department of Mathematics, Brandeis University, 415 South Street, MS 050, Waltham, MA 02454, USA, adler@brandeis.edu

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.

- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index