- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index

## Abstract and Keywords

This article discusses a series of recent applications of random matrix theory (RMT) to the problem of RNA folding. It first provides a schematic overview of the RNA folding problem, focusing on the concept of RNA pseudoknots, before considering a simplified framework for describing the folding of an RNA molecule; this framework is given by the statistic mechanical model of a polymer chain of L nucleotides in three dimensions with interacting monomers. The article proceeds by presenting a physical interpretation of the RNA matrix model and analysing the large-N expansion of the matrix integral, along with the pseudoknotted homopolymer chain. It extends previous results about the asymptotic distribution of pseudoknots of a phantom homopolymer chain in the limit of large chain length.

Keywords: random matrix theory (RMT), RNA folding, RNA pseudoknot, RNA molecule, polymer chain, matrix model, matrix integral, homopolymer chain, asymptotic distribution

Graziano Vernizzi, Physics and Astronomy, Siena College, 515 Loudon Rd., Loudonville, NY 12211-1462, USA, gvernizzi@siena.edu

Henri Orland, Institut de Physique Théorique, CEA/Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France, Henri.ORLAND@cea.fr

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.

- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index