Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 24 June 2019

Abstract and Keywords

This article focuses on the use of the orthogonal polynomial method for computing correlation functions, cluster functions, gap probability, Janossy density, and spacing distributions for the eigenvalues of matrix ensembles with unitary-invariant probability law. It first considers the classical families of orthogonal polynomials (Hermite, Laguerre, and Jacobi) and some corresponding unitary ensembles before discussing the statistical properties of N-tuples of real numbers. It then reviews the definitions of basic statistical quantities and demonstrates how their distributions can be made explicit in terms of orthogonal polynomials. It also describes the k-point correlation function, Fredholm determinants of finite-rank kernels, and resolvent kernels.

Keywords: orthogonal polynomial method, correlation function, cluster function, gap probability, Janossy density, spacing, orthogonal polynomial, unitary ensemble, Fredholm determinant, resolvent kernel

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.