Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 18 September 2019

Abstract and Keywords

This article focuses on chiral random matrix theories with the global symmetries of quantum chromodynamics (QCD). In particular, it explains how random matrix theory (RMT) can be applied to the spectra of the Dirac operator both at zero chemical potential, when the Dirac operator is Hermitian, and at non-zero chemical potential, when the Dirac operator is non-Hermitian. Before discussing the spectra of these Dirac operators at non-zero chemical potential, the article considers spontaneous symmetry breaking in RMT and the QCD partition function. It then examines the global symmetries of QCD, taking into account the Dirac operator for a finite chiral basis, as well as the global symmetry breaking pattern and the Goldstone manifold in chiral random matrix theory (chRMT). It also describes the generating function for the Dirac spectrum and applications of chRMT to QCD to gauge degrees of freedom.

Keywords: quantum chromodynamics (QCD), random matrix theory (RMT), Dirac operator, zero chemical potential, non-zero chemical potential, spontaneous symmetry breaking, partition function, chiral random matrix theory, Dirac spectrum, degrees of freedom

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.