Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 18 September 2019

Abstract and Keywords

This article discusses the connection between large N matrix models and critical phenomena on lattices with fluctuating geometry, with particular emphasis on the solvable models of 2D lattice quantum gravity and how they are related to matrix models. It first provides an overview of the continuum world sheet theory and the Liouville gravity before deriving the Knizhnik-Polyakov-Zamolodchikov scaling relation. It then describes the simplest model of 2D gravity and the corresponding matrix model, along with the vertex/height integrable models on planar graphs and their mapping to matrix models. It also considers the discretization of the path integral over metrics, the solution of pure lattice gravity using the one-matrix model, the construction of the Ising model coupled to 2D gravity discretized on planar graphs, the O(n) loop model, the six-vertex model, the q-state Potts model, and solid-on-solid and ADE matrix models.

Keywords: matrix model, quantum gravity, continuum world sheet theory, Liouville gravity, scaling relation, planar graph, lattice gravity, Ising model, six-vertex model, Potts model

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.