Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 22 September 2019

Abstract and Keywords

This article examines the notion of ‘symmetry class’, which expresses the relevance of symmetries as an organizational principle. In his 1962 paper The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics, Dyson introduced the prime classification of random matrix ensembles based on a quantum mechanical setting with symmetries. He described three types of independent irreducible ensembles: complex Hermitian, real symmetric, and quaternion self-dual. This article first reviews Dyson’s threefold way from a modern perspective before considering a minimal extension of his setting to incorporate the physics of chiral Dirac fermions and disordered superconductors. In this minimally extended setting, Hilbert space is replaced by Fock space equipped with the anti-unitary operation of particle-hole conjugation, and symmetry classes are in one-to-one correspondence with the large families of Riemannian symmetric spaces.

Keywords: symmetry group, quantum mechanics, random matrix ensemble, fermion, disordered superconductor, Hilbert space, Fock space, symmetry class, Riemannian symmetric space

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.