Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 22 September 2019

Abstract and Keywords

This article discusses the relationship between random matrices and maps, i.e. graphs drawn on surfaces, with particular emphasis on the one-matrix model and how it can be used to solve a map enumeration problem. It first provides an overview of maps and related objects, recalling the basic definitions related to graphs and defining maps as graphs embedded into surfaces before considering a coding of maps by pairs of permutations. It then examines the connection between matrix integrals and maps, focusing on the Hermitian one-matrix model with a polynomial potential and how the formal expansion of its free energy around a Gaussian point (quadratic potential) can be represented by diagrams identifiable with maps. The article also illustrates how the solution of the map enumeration problem can be deduced by means of random matrix theory (RMT). Finally, it explains how the matrix model result can be translated into a bijective proof.

Keywords: random matrices, map, graph, one-matrix model, map enumeration problem, matrix integral, polynomial potential, free energy, random matrix theory (RMT)

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.