Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 22 September 2019

Abstract and Keywords

This article considers characteristic polynomials and reviews a few useful results obtained in simple Gaussian models of random Hermitian matrices in the presence of an external matrix source. It first considers the products and ratio of characteristic polynomials before discussing the duality theorems for two different characteristic polynomials of Gaussian weights with external sources. It then describes the m-point correlation functions of the eigenvalues in the Gaussian unitary ensemble and how they are deduced from their Fourier transforms U(s1, … , sm). It also analyses the relation of the correlation function of the characteristic polynomials to the standard n-point correlation function using the replica and supersymmetric methods. Finally, it shows how the topological invariants of Riemann surfaces, such as the intersection numbers of the moduli space of curves, may be derived from averaged characteristic polynomials.

Keywords: characteristic polynomial, correlation function, unitary ensemble, Fourier transform, replica method, supersymmetric method, topological invariant, Riemann surface, intersection number, moduli space

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.