Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 24 June 2019

Abstract and Keywords

This article examines two random matrix ensembles that are useful for describing critical spectral statistics in systems with multifractal eigenfunction statistics: the Gaussian non-invariant ensemble and the invariant random matrix ensemble. It first provides an overview of non-invariant Gaussian random matrix theory (RMT) with multifractal eigenvectors and invariant random matrix theory (RMT) with log-square confinement before discussing self-unfolding and not self-unfolding in invariant RMT. It then considers a non-trivial unfolding and how it changes the form of the spectral correlations, along with the appearance of a ghost correlation dip in RMT and Hawking radiation. It also describes the correspondence between invariant and non-invariant ensembles and concludes by introducing a simple field theory in 1+1 dimensions which reproduces level statistics of both of the two random matrix models and the classical Wigner-Dyson spectral statistics in the framework of the unified formalism of Luttinger liquid.

Keywords: random matrix ensemble, critical spectral statistics, Gaussian non-invariant ensemble, invariant random matrix ensemble, random matrix theory (RMT), unfolding, spectral correlation, ghost correlation dip, Hawking radiation, Luttinger liquid

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.