Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 18 August 2019

Abstract and Keywords

This article reviews recent progress in superconducting quantum bits, including major improvements in design and coherence times. It first provides an overview of the basics of modern superconducting qubit devices and their architectures before turning to single-qubit Hamiltonians and reference frames. It then examines how decoherence originates with noise and shows how to characterize and mitigate this noise using magnetic-resonance-type pulse sequences. It also describes the first-generation superconducting qubits and the now-dominant circuit-quantum electrodynamics architecture in which qubits are coupled to microwave resonators. Finally, it considers several improved designs of superconducting qubits in which coherence times have been significantly improved by minimizing the sensitivity to fluctuating impurities and the coupling to external modes.

Keywords: superconducting quantum bits, design, coherence times, single-qubit Hamiltonians, reference frames, decoherence, noise, superconducting qubits, circuit-quantum electrodynamics, microwave resonators

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.