Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 03 August 2020

Abstract and Keywords

This article discusses the use of a stochastic kinetic model to study protein level oscillations in single living cancer cells, using the p53 and Mdm2 proteins as examples. It describes the refinement of a dynamic stochastic process model of the cellular response to DNA damage and compares this model to time course data on the levels of p53 and Mdm2. The article first provides a biological background on p53 and Mdm2 before explaining how the stochastic kinetic model is constructed. It then introduces the stochastic kinetic model and links it to the data and goes on to apply sophisticated MCMC methods to compute posterior distributions. The results demonstrate that it is possible to develop computationally intensive Markov chain Monte Carlo (MCMC) methods for conducting a Bayesian analysis of an intra-cellular stochastic systems biology model using single-cell time course data.

Keywords: stochastic kinetic model, protein level oscillations, cancer cells, p53, Mdm2, DNA damage, time course data, Markov chain Monte Carlo (MCMC) methods, posterior distributions, systems biology

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.