Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 03 August 2020

Abstract and Keywords

This article discusses the use of Bayesian methods in analysing data that evolve over time in sequential multilocation auditing. Using the New York food stamps program as a case study, it proposes a model that incorporates a nonparametric component for the error magnitudes (taints), a hierarchical model for overall error rates across counties and parameters controlling the variation of rates from one year to the next, including an overall trend in error rates. The article first provides an overview of the New York food stamps program, along with the auditing concepts and terminology, before introducing the Bayesian model. This model is used to examine a sample of individual awards of food stamps to see if the value awarded is correct according to the rules of the scheme. The model makes it possible to smooth estimation of error rates and error classes in small counties across counties and through time.

Keywords: Bayesian methods, sequential multilocation auditing, New York food stamps program, hierarchical model, Bayesian model, error rates, error classes

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.