- Series Information
- The Oxford Handbook of Philosophy of Mathematics and Logic
- Preface
- Notes on the Contributors
- Philosophy of Mathematics and Its Logic: Introduction
- A Priority and Application: Philosophy of Mathematics in the Modern Period
- Later Empiricism and Logical Positivism
- Wittgenstein on Philosophy of Logic and Mathematics
- The Logicism of Frege, Dedekind, and Russell
- Logicism in the Twenty‐first Century
- Logicism Reconsidered
- Formalism
- Intuitionism and Philosophy
- Intuitionism in Mathematics
- Intuitionism Reconsidered
- Quine and the Web of Belief
- Three Forms of Naturalism
- Naturalism Reconsidered
- Nominalism
- Nominalism Reconsidered
- Structuralism
- Structuralism Reconsidered
- Predicativity
- Mathematics—Application and Applicability
- Logical Consequence, Proof Theory, and Model Theory
- Logical Consequence From a Constructivist View
- Relevance in Reasoning
- No Requirement of Relevance
- Higher‐order Logic
- Higher‐order Logic Reconsidered
- Index
Abstract and Keywords
The extent to which practicing mathematicians of a conventional tendency are already intuitionists is reassuring. Today's mathematicians treat mathematical claims much as Brouwer once did: as independently meaningful efforts to record mathematical facts which are, when true, demonstrable from proofs rooted in basic assumptions or principles. Until they are proven, those assumptions rest upon intuitions: illuminating, at times fallible, insights into the dynamical behaviors of numbers, sets, functions, and operations on them.
Keywords: intuitionism, Brouwer, mathematical claims, mathematics, mathematical facts, intuitions, numbers
D. C. McCarty is member of the Logic Program at Indiana University.
Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.
- Series Information
- The Oxford Handbook of Philosophy of Mathematics and Logic
- Preface
- Notes on the Contributors
- Philosophy of Mathematics and Its Logic: Introduction
- A Priority and Application: Philosophy of Mathematics in the Modern Period
- Later Empiricism and Logical Positivism
- Wittgenstein on Philosophy of Logic and Mathematics
- The Logicism of Frege, Dedekind, and Russell
- Logicism in the Twenty‐first Century
- Logicism Reconsidered
- Formalism
- Intuitionism and Philosophy
- Intuitionism in Mathematics
- Intuitionism Reconsidered
- Quine and the Web of Belief
- Three Forms of Naturalism
- Naturalism Reconsidered
- Nominalism
- Nominalism Reconsidered
- Structuralism
- Structuralism Reconsidered
- Predicativity
- Mathematics—Application and Applicability
- Logical Consequence, Proof Theory, and Model Theory
- Logical Consequence From a Constructivist View
- Relevance in Reasoning
- No Requirement of Relevance
- Higher‐order Logic
- Higher‐order Logic Reconsidered
- Index