Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 30 November 2021

Abstract and Keywords

The nematode Caenorhabditis elegans is among the most intensely studied animals in modern experimental biology. In particular, because of its amenability to classical and molecular genetics, its simple and compact nervous system, and its transparency to optogenetic recording and manipulation, C. elegans has been widely used to investigate how individual gene products act in the context of neuronal circuits to generate behavior. C. elegans is the first and at present the only animal whose neuronal connectome has been characterized at the level of individual neurons and synapses, and the wiring of this connectome shows surprising parallels with the micro- and macro-level structures of larger brains. This chapter reviews our current molecular- and circuit-level understanding of behavior in C. elegans. In particular, we discuss mechanisms underlying the processing of sensory information, the generation of specific motor outputs, and the control of behavioral states.

Keywords: Caenorhabditis elegans, neuronal connectome, neuronal circuits, sensory information, motor outputs, behavioral states

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.