- Copyright Page
- Oxford Handbooks in Neuroscience
- Editorial Board
- About the Editor
- Contributors
- Preface
- Recent Trends in Invertebrate Neuroscience
- The Divergent Evolution of Arthropod Brains: Ground Pattern Organization and Stability Through Geological Time
- Development of the Nervous System of Invertebrates
- Invertebrate Genomics Provide Insights Into the Origin of Synaptic Transmission
- Genetics of Behavior in <i>C. elegans</i>
- Genetic Analysis of Behavior in <i>Drosophila</i>
- Cnidarian Neurobiology
- Flatworm Neurobiology in the Postgenomic Era
- Morphology of Invertebrate Neurons and Synapses
- Neurotransmitters and Neuropeptides of Invertebrates
- Auditory Systems of <i>Drosophila</i> and Other Invertebrates
- Motion Vision in Arthropods
- Chemosensory Transduction in Arthropods
- Magnetoreception of Invertebrates
- Rhythmic Pattern Generation in Invertebrates
- The Feeding Network of <i>Aplysia</i>: Features That Are Distinctive and Shared With Other Molluscs
- Control of Locomotion in Hexapods
- Neural Control of Swimming in Nudipleura Molluscs
- Control of Locomotion in Annelids
- Control of Locomotion in Crustaceans
- Motor Control in Soft-Bodied Animals: The Octopus
- Nonassociative Learning in Invertebrates
- Associative Learning in Invertebrates
- The Vertical Lobe of Cephalopods: A Brain Structure Ideal for Exploring the Mechanisms of Complex Forms of Learning and Memory
- Mechanisms of Axonal Degeneration and Regeneration: Lessons Learned From Invertebrates
- Evolution and Design of Invertebrate Circadian Clocks
- Neurobiology of Reproduction in Molluscs: Mechanisms and Evolution
- Search Strategies for Intentionality in the Honeybee Brain
- Identifying Critical Genes, Neurotransmitters, and Circuits for Social Behavior in Invertebrates
- Rapid Neural Polyphenism in Cephalopods: Current Understanding and Future Challenges
- Index
Abstract and Keywords
Octopus, squid, and cuttlefish can change their appearance (phenotype) in 200–700 msec due to neural control of chromatophore organs, iridophore cells, and three-dimensional papillae in their elaborate skin. Great strides have been made in determining the primary visual background stimuli that guide camouflage skin patterning in cuttlefish, yet many key details remain unknown. The current behavioral/psychophysical experimental paradigm developed in cuttlefish needs to be expanded to octopus and squid, which will potentially elucidate general principles governing complex behaviors such as communication and camouflage. The neural underpinnings of this dynamic polyphenic system are poorly known. Peripheral control mechanisms of chromatophores and iridophores have been elucidated recently, but central nervous system experimentation has lagged far behind; both aspects require targeted neurobiological study, genomic approaches, and system modeling. The unusual neuroanatomy and complex behavior of these marine invertebrates provide an opportunity to discover novel mechanisms of visual perception, decision-making, and motor output.
Keywords: crypsis, camouflage, communication, octopus, cuttlefish, squid, defense, brain, neurophysiology, skin
Roger T. Hanlon, Marine Biological Laboratory, Woods Hole, MA
Chuan-Chin Chiao, Department of Life Science, National Tsing Hua University, Taiwan
Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.
- Copyright Page
- Oxford Handbooks in Neuroscience
- Editorial Board
- About the Editor
- Contributors
- Preface
- Recent Trends in Invertebrate Neuroscience
- The Divergent Evolution of Arthropod Brains: Ground Pattern Organization and Stability Through Geological Time
- Development of the Nervous System of Invertebrates
- Invertebrate Genomics Provide Insights Into the Origin of Synaptic Transmission
- Genetics of Behavior in <i>C. elegans</i>
- Genetic Analysis of Behavior in <i>Drosophila</i>
- Cnidarian Neurobiology
- Flatworm Neurobiology in the Postgenomic Era
- Morphology of Invertebrate Neurons and Synapses
- Neurotransmitters and Neuropeptides of Invertebrates
- Auditory Systems of <i>Drosophila</i> and Other Invertebrates
- Motion Vision in Arthropods
- Chemosensory Transduction in Arthropods
- Magnetoreception of Invertebrates
- Rhythmic Pattern Generation in Invertebrates
- The Feeding Network of <i>Aplysia</i>: Features That Are Distinctive and Shared With Other Molluscs
- Control of Locomotion in Hexapods
- Neural Control of Swimming in Nudipleura Molluscs
- Control of Locomotion in Annelids
- Control of Locomotion in Crustaceans
- Motor Control in Soft-Bodied Animals: The Octopus
- Nonassociative Learning in Invertebrates
- Associative Learning in Invertebrates
- The Vertical Lobe of Cephalopods: A Brain Structure Ideal for Exploring the Mechanisms of Complex Forms of Learning and Memory
- Mechanisms of Axonal Degeneration and Regeneration: Lessons Learned From Invertebrates
- Evolution and Design of Invertebrate Circadian Clocks
- Neurobiology of Reproduction in Molluscs: Mechanisms and Evolution
- Search Strategies for Intentionality in the Honeybee Brain
- Identifying Critical Genes, Neurotransmitters, and Circuits for Social Behavior in Invertebrates
- Rapid Neural Polyphenism in Cephalopods: Current Understanding and Future Challenges
- Index