- Copyright Page
- Oxford Handbooks in Neuroscience
- Editorial Board
- About the Editor
- Contributors
- Preface
- Recent Trends in Invertebrate Neuroscience
- The Divergent Evolution of Arthropod Brains: Ground Pattern Organization and Stability Through Geological Time
- Development of the Nervous System of Invertebrates
- Invertebrate Genomics Provide Insights Into the Origin of Synaptic Transmission
- Genetics of Behavior in <i>C. elegans</i>
- Genetic Analysis of Behavior in <i>Drosophila</i>
- Cnidarian Neurobiology
- Flatworm Neurobiology in the Postgenomic Era
- Morphology of Invertebrate Neurons and Synapses
- Neurotransmitters and Neuropeptides of Invertebrates
- Auditory Systems of <i>Drosophila</i> and Other Invertebrates
- Motion Vision in Arthropods
- Chemosensory Transduction in Arthropods
- Magnetoreception of Invertebrates
- Rhythmic Pattern Generation in Invertebrates
- The Feeding Network of <i>Aplysia</i>: Features That Are Distinctive and Shared With Other Molluscs
- Control of Locomotion in Hexapods
- Neural Control of Swimming in Nudipleura Molluscs
- Control of Locomotion in Annelids
- Control of Locomotion in Crustaceans
- Motor Control in Soft-Bodied Animals: The Octopus
- Nonassociative Learning in Invertebrates
- Associative Learning in Invertebrates
- The Vertical Lobe of Cephalopods: A Brain Structure Ideal for Exploring the Mechanisms of Complex Forms of Learning and Memory
- Mechanisms of Axonal Degeneration and Regeneration: Lessons Learned From Invertebrates
- Evolution and Design of Invertebrate Circadian Clocks
- Neurobiology of Reproduction in Molluscs: Mechanisms and Evolution
- Search Strategies for Intentionality in the Honeybee Brain
- Identifying Critical Genes, Neurotransmitters, and Circuits for Social Behavior in Invertebrates
- Rapid Neural Polyphenism in Cephalopods: Current Understanding and Future Challenges
- Index
Abstract and Keywords
Do insects, like other animals, expect future events, predict the value of potential actions, and decide between behavioral options without having access to the indicating stimuli? These cognitive capacities are captured by the term intentionality. This chapter addresses the question at two levels, behavior and neural correlates. Behavioral studies are performed with freely flying bees in the natural environment and with harnessed bees in the laboratory by applying the proboscis extension response paradigm. Data are presented and discussed on context-dependent learning, selective attention, rule learning, navigation, communication, and sleep-dependent memory consolidation. Although behavioral analyses document the rich repertoire and the cognitive dimensions of honeybee behavior, intentionality is nearly impossible to prove by behavioral analyses only and neural correlates are essential.
Keywords: context, attention, rule learning, navigation, dance communication, sleep, mushroom body, output neurons, VUMmx1, PCT neurons
Freie Universität Berlin
Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.
- Copyright Page
- Oxford Handbooks in Neuroscience
- Editorial Board
- About the Editor
- Contributors
- Preface
- Recent Trends in Invertebrate Neuroscience
- The Divergent Evolution of Arthropod Brains: Ground Pattern Organization and Stability Through Geological Time
- Development of the Nervous System of Invertebrates
- Invertebrate Genomics Provide Insights Into the Origin of Synaptic Transmission
- Genetics of Behavior in <i>C. elegans</i>
- Genetic Analysis of Behavior in <i>Drosophila</i>
- Cnidarian Neurobiology
- Flatworm Neurobiology in the Postgenomic Era
- Morphology of Invertebrate Neurons and Synapses
- Neurotransmitters and Neuropeptides of Invertebrates
- Auditory Systems of <i>Drosophila</i> and Other Invertebrates
- Motion Vision in Arthropods
- Chemosensory Transduction in Arthropods
- Magnetoreception of Invertebrates
- Rhythmic Pattern Generation in Invertebrates
- The Feeding Network of <i>Aplysia</i>: Features That Are Distinctive and Shared With Other Molluscs
- Control of Locomotion in Hexapods
- Neural Control of Swimming in Nudipleura Molluscs
- Control of Locomotion in Annelids
- Control of Locomotion in Crustaceans
- Motor Control in Soft-Bodied Animals: The Octopus
- Nonassociative Learning in Invertebrates
- Associative Learning in Invertebrates
- The Vertical Lobe of Cephalopods: A Brain Structure Ideal for Exploring the Mechanisms of Complex Forms of Learning and Memory
- Mechanisms of Axonal Degeneration and Regeneration: Lessons Learned From Invertebrates
- Evolution and Design of Invertebrate Circadian Clocks
- Neurobiology of Reproduction in Molluscs: Mechanisms and Evolution
- Search Strategies for Intentionality in the Honeybee Brain
- Identifying Critical Genes, Neurotransmitters, and Circuits for Social Behavior in Invertebrates
- Rapid Neural Polyphenism in Cephalopods: Current Understanding and Future Challenges
- Index