Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 15 July 2020

Abstract and Keywords

This article discusses the connection between the matrix models and algebraic geometry. In particular, it considers three specific applications of matrix models to algebraic geometry, namely: the Kontsevich matrix model that describes intersection indices on moduli spaces of curves with marked points; the Hermitian matrix model free energy at the leading expansion order as the prepotential of the Seiberg-Witten-Whitham-Krichever hierarchy; and the other orders of free energy and resolvent expansions as symplectic invariants and possibly amplitudes of open/closed strings. The article first describes the moduli space of algebraic curves and its parameterization via the Jenkins-Strebel differentials before analysing the relation between the so-called formal matrix models (solutions of the loop equation) and algebraic hierarchies of Dijkgraaf-Witten-Whitham-Krichever type. It also presents the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations, along with higher expansion terms and symplectic invariants.

Keywords: matrix model, algebraic geometry, Kontsevich matrix model, moduli space, Hermitian matrix model, free energy, Seiberg-Witten-Whitham-Krichever hierarchy, symplectic invariants, formal matrix model, WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.