Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 16 December 2019

Abstract and Keywords

This article examines the THz emission from high-temperature superconducting (HTS) cuprates in the mesoscopic state using the intrinsic Josephson junction model. Cuprate superconductors are high-temperature superconductors that exhibit exotic electromagnetic properties. One of the remarkable features of HTS cuprates is high anisotropy due to their layered structures. Almost all HTS cuprates are composed of stacks of CuO2 layers and blocking layers which supply charge carriers to the CuO2 layers. The crystal structures of the HTS cuprates naturally form Josephson junctions known as intrinsic Josephson junctions (IJJs). This article first describes the basic theory of IJJ and the mechanism of THz emission before discussing the effect of temperature inhomogeneity on the emission properties. It then introduces a novel IJJ-based THz emitter that utilizes laser heating. Theoretical results show that the THz emission is caused by the strong excitation of transverse Josephson plasma waves in IJJs under a direct current bias.

Keywords: THz emission, high-temperature superconducting cuprates, high-temperature superconductors, intrinsic Josephson junctions, temperature inhomogeneity, THz emitter, laser heating, Josephson plasma waves

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.