Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 24 November 2020

Abstract and Keywords

This article presents the results of model calculations carried out to determine the mesoscopic structural features of high-temperature superconducting (HTS) crystal structures, and especially their characteristic high critical temperature (Tc) and anisotropy. The crystal structure of high-temperature superconductors (HTSc) is unique in having some mesoscopic features. For example, the structures of a majority of cuprite superconductors are comprised of two structural blocks, perovskite and rock salt, stacked along the c-direction. This article calculates the interaction between the perovskite and rock salt blocks in the form of combinative energy in order to elucidate the effects of mesoscopic structures on high-Tc superconductivity. Both X-ray diffraction and Raman spectroscopy show that a ‘fixed triangle’ exists in the samples under investigation. The article also examines the importance of electron–phonon coupling in high-Tc superconductors.

Keywords: mesoscopic structures, crystal structures, critical temperature, anisotropy, high-temperature superconductors, cuprite superconductors, combinative energy, high-temperature superconductivity, fixed triangle, electron–phonon coupling

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.