Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 08 August 2020

Abstract and Keywords

This article focuses on some aspects of high-frequency data and their use in volatility forecasting. High-frequency data can be used to construct volatility forecasts. The article reviews two leading approaches to this. One approach is the reduced-form forecast, where the forecast is constructed from a time series model for realized measures, or a simple regression-based approach such as the heterogeneous autoregressive model. The other is based on more traditional discrete-time volatility models that include a modeling of returns. Such models can be generalized to utilize information provided by realized measures. The article also discusses how volatility forecasts, produced by complex volatility models, can benefit from high-frequency data in an indirect manner, through the use of realized measures to facilitate and improve the estimation of complex models.

Keywords: high-frequency data, economic forecasting, volatility forecasting

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.