Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 03 March 2021

Abstract and Keywords

In Physics, Aristotle starts his positive account of the infinite by raising a problem: “[I]f one supposes it not to exist, many impossible things result, and equally if one supposes it to exist.” His views on time, extended magnitudes, and number imply that there must be some sense in which the infinite exists, for he holds that time has no beginning or end, magnitudes are infinitely divisible, and there is no highest number. In Aristotle's view, a plurality cannot escape having bounds if all of its members exist at once. Two interesting, and contrasting, interpretations of Aristotle's account can be found in the work of Jaako Hintikka and of Jonathan Lear. Hintikka tries to explain the sense in which the infinite is actually, and the sense in which its being is like the being of a day or a contest. Lear focuses on the sense in which the infinite is only potential, and emphasizes that an infinite, unlike a day or a contest, is always incomplete.

Keywords: Aristotle, infinite, Physics, time, magnitudes, plurality, Jaako Hintikka, Jonathan Lear, potential, day

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.