Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 20 October 2020

Abstract and Keywords

This chapter discusses the role of race and gender in artificial intelligence (AI). The rapid permeation of AI into society has not been accompanied by a thorough investigation of the sociopolitical issues that cause certain groups of people to be harmed rather than advantaged by it. For instance, recent studies have shown that commercial automated facial analysis systems have much higher error rates for dark-skinned women, while having minimal errors on light-skinned men. Moreover, a 2016 ProPublica investigation uncovered that machine learning–based tools that assess crime recidivism rates in the United States are biased against African Americans. Other studies show that natural language–processing tools trained on news articles exhibit societal biases. While many technical solutions have been proposed to alleviate bias in machine learning systems, a holistic and multifaceted approach must be taken. This includes standardization bodies determining what types of systems can be used in which scenarios, making sure that automated decision tools are created by people from diverse backgrounds, and understanding the historical and political factors that disadvantage certain groups who are subjected to these tools.

Keywords: race, gender, artificial intelligence, face-recognition systems, machine learning systems, societal biases, automated decision tools, AI ethics, machine learning fairness, fairness accountability transparency and ethics

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.