Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 18 March 2019

Abstract and Keywords

As robots become increasingly prevalent in our society, it becomes increasingly important to endow them with natural language capabilities, including the ability to both understand and generate so-called referring expressions. In recent work, we have sought to enable referring expression understanding capabilities by leveraging the Givenness Hierarchy (GH), which provides an elegant linguistic framework for reasoning about notions of reference in human discourse. This chapter first provides an overview of the GH and discusses previous GH-theoretic approaches to reference resolution. It then describes our own GH-theoretic approach, the GH-POWER algorithm, and suggests future refinements of our algorithm with respect to the theoretical commitments of the GH. Next, the chapter briefly surveys other prominent approaches to reference resolution in robotics, and discusses how these compare to our approach. Finally, it concludes with a discussion of possible directions for future work.

Keywords: reference resolution, language grounding, human–robot, discourse robotics, Givenness Hierarchy

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.