Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy).

date: 19 February 2018

Abstract and Keywords

Neural mechanisms of selective attention route behaviourally relevant information through brain networks for detailed processing. These attention mechanisms are classically viewed as being solely implemented in the cortex, relegating the thalamus to a passive relay of sensory information. However, this passive view of the thalamus is being revised in light of recent studies supporting an important role for the thalamus in selective attention. Evidence suggests that the first-order thalamic nucleus, the lateral geniculate nucleus, regulates the visual information transmitted from the retina to visual cortex, while the higher-order thalamic nucleus, the pulvinar, regulates information transmission between visual cortical areas, according to attentional demands. This chapter discusses how modulation of thalamic responses, switching the response mode of thalamic neurons, and changes in neural synchrony across thalamo-cortical networks contribute to selective attention.

Keywords: attention, oscillations, synchrony, pulvinar, lateral geniculate nucleus, thalamic reticular nucleus, diffusion tensor imaging, multi-electrode recordings

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.