Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE ( (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy).

date: 19 March 2018

Abstract and Keywords

This article outlines the recently used methods for designing part-of-speech taggers; computer programs for assigning contextually appropriate grammatical descriptors to words in texts. It begins with the description of general architecture and task setting. It gives an overview of the history of tagging and describes the central approaches to tagging. These approaches are: taggers based on handwritten local rules, taggers based on n-grams automatically derived from text corpora, taggers based on hidden Markov models, taggers using automatically generated symbolic language models derived using methods from machine tagging, taggers based on handwritten global rules, and hybrid taggers, which combine the advantages of handwritten and automatically generated taggers. This article focuses on handwritten tagging rules. Well-tagged training corpora are a valuable resource for testing and improving language model. The text corpus reminds the grammarian about any oversight while designing a rule.

Keywords: part-of-speech taggers, grammatical descriptors, task setting, machine tagging, Markov model, handwritten tagging rules

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.