Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy).

date: 27 April 2017

Abstract and Keywords

Hearing in invertebrates has evolved independently as an adaptation to avoid predators or to mediate intraspecific communication. Although many invertebrate groups are able to respond to sound stimuli, insects are the only group in which hearing is widely used. Therefore, we will focus here on the auditory systems of some well-known insect models. Appearance of the ability to perceive sound in insects is presumably a quite recent event in evolution. As a result of independent evolution, diverse types of hearing organs are evolved in insects. Here we will introduce basic features of insect ears and the mechanisms through which sound stimuli are converted into neuronal electric signals. We will also summarize our current understanding of neural processing of auditory information, including tonotopy, sound localization, and pattern recognition.

Keywords: insect hearing, velocity receivers, pressure receivers, tonotopy, frequency tuning, sound localization, pattern recognition

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.