Show Summary Details

Page of

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

date: 17 December 2018

Abstract and Keywords

This article provides an overview of recent nonparametric and semiparametric advances in kernel regression estimation for functional data. In particular, it considers the various statistical techniques based on kernel smoothing ideas that have recently been developed for functional regression estimation problems. The article first examines nonparametric functional regression modelling before discussing three popular functional regression estimates constructed by means of kernel ideas, namely: the Nadaraya-Watson convolution kernel estimate, the kNN functional estimate, and the local linear functional estimate. Uniform asymptotic results are then presented. The article proceeds by reviewing kernel methods in semiparametric functional regression such as single functional index regression and partial linear functional regression. It also looks at the use of kernels for additive functional regression and concludes by assessing the impact of kernel methods on practical real-data analysis involving functional (curves) datasets.

Keywords: functional regression estimation, functional data, kernel smoothing, nonparametric functional regression, Nadaraya-Watson convolution kernel estimate, kNN functional estimate, local linear functional estimate, semiparametric functional regression, single functional index regression, additive functional regression

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.