- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index

## Abstract and Keywords

This article deals with beta ensembles. Classical random matrix ensembles contain a parameter β, taking on the values 1, 2, and 4. This parameter, which relates to the underlying symmetry, appears as a repulsion sβ between neighbouring eigenvalues for small s. β may be regarded as a continuous positive parameter on the basis of different viewpoints of the eigenvalue probability density function for the classical random matrix ensembles - as the Boltzmann factor for a log-gas or the squared ground state wave function of a quantum many-body system. The article first considers log-gas systems before discussing the Fokker-Planck equation and the Calogero-Sutherland system. It then describes the random matrix realization of the β-generalization of the circular ensemble and concludes with an analysis of stochastic differential equations resulting from the case of the bulk scaling limit of the β-generalization of the Gaussian ensemble.

Keywords: beta ensemble, random matrix ensemble, Boltzmann factor, log-gas system, Fokker-Planck equation, Calogero-Sutherland system, circular ensemble, stochastic differential equation, Gaussian ensemble

Peter J. Forrester, Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic 3010, Australia, p.forrester@ms.unimelb.edu.au

Access to the complete content on Oxford Handbooks Online requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.

- The Oxford Handbook of Random Matrix Theory
- Dedication
- Foreword
- Detailed Contents
- List of Contributors
- Introduction and guide to the handbook
- History – an overview
- Symmetry classes
- Spectral statistics of unitary ensembles
- Spectral statistics of orthogonal and symplectic ensembles
- Universality
- Supersymmetry
- Replica approach in random matrix theory
- Painlevé transcendents
- Random matrix theory and integrable systems
- Determinantal point processes
- Random matrix representations of critical statistics
- Heavy-tailed random matrices
- Phase transitions
- Two-matrix models and biorthogonal polynomials
- Chain of matrices, loop equations, and topological recursion
- Unitary integrals and related matrix models
- Non-Hermitian ensembles
- Characteristic polynomials
- Beta ensembles
- Wigner matrices
- Free probability theory
- Random banded and sparse matrices
- Number theory
- Random permutations and related topics
- Enumeration of maps
- Knot theory and matrix integrals
- Multivariate statistics
- Algebraic geometry and matrix models
- Two-dimensional quantum gravity
- String theory
- Quantum chromodynamics
- Quantum chaos and quantum graphs
- Resonance scattering of waves in chaotic systems
- Condensed matter physics
- Classical and quantum optics
- Extreme eigenvalues of Wishart matrices: application to entangled bipartite system
- Random growth models
- Random matrices and Laplacian growth
- Financial applications of random matrix theory: a short review
- Asymptotic singular value distributions in information theory
- Random matrix theory and ribonucleic acid (RNA) folding
- Complex networks
- Index